39 research outputs found

    Initiation and Polymer Density of Conjugated Polymer Brushes

    Get PDF
    The growth mechanism and polymer density in conjugated polymer brush (CPB) films composed of poly(3-methylthiophene) (P3MT) are characterized. X-ray photoelectron spectroscopy experiments show that the initiation of aryl halide monolayers by Pd(PtBu3)2 produces disproportionated monolayer initiators. Unlike disproportionated species formed during the solution-phase initiation of aryl halides, which cannot mediate polymerization, the surface-bound initiators catalyze polymerization to form CPB films with a high grafting density (1.2 nm-2). Rutherford backscattering spectrometry (RBS) experiments show that P3MT CPB films have a characteristic monomer volume density (3.7 nm-3) that is indistinguishable from the volume density of spuncast poly(3-hexylthiophene) films. Using these RBS and XPS results, characteristics of P3MT CPB growth are obtained, including the turnover frequency (7.5 h-1) and polymer molecular weight (300 g/mol·nm)

    The Future Landscape of High-Redshift Galaxy Cluster Science

    Get PDF
    Large scale structure and cosmolog

    Approach to chaos in ultracold atomic and molecular physics: Statistics of near-threshold bound states for Li+CaH and Li+CaF

    Get PDF
    We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior

    Quantum chaos in ultracold collisions between Yb(1S0^1S_0) and Yb(3P2^3P_2)

    Get PDF
    We calculate and analyze Feshbach resonance spectra for ultracold Yb(1S0)+Yb(3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos
    corecore