1,506 research outputs found

    Toward Chirality‐Encoded Domain Wall Logic

    Get PDF
    Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the potential to create high‐speed, ultralow power computational architectures. This article explores the feasibility of β€œchirality‐encoded domain wall logic,” a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. High‐resolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chirality‐selective output of domain walls from 2‐in‐1‐out nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chirality‐encoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data

    Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses

    Get PDF
    G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place

    Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kraits (genus <it>Bungarus</it>) and cobras (genus <it>Naja</it>) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for <it>Bungarus multicinctus </it>and <it>Naja atra</it>, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; <it>i.e</it>., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP).</p> <p>Results</p> <p>In total, 1092 valid expressed sequences tags (ESTs) for <it>B. multicinctus </it>and 1166 ESTs for <it>N. atra </it>were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and <it>Ξ² </it>bungarotoxin (25.1%) comprise the main toxin classes in <it>B. multicinctus</it>, while 3FTx (95.8%) is the dominant toxin in <it>N. atra</it>. We also observed several less abundant venom families in <it>B. multicinctus </it>and <it>N. atra</it>, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in <it>B. multicinctus</it>. A total of 71 positive toxin BAC clones in <it>B. multicinctus </it>and <it>N. atra </it>were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-postive BACs were sequenced to reveal gene structures of 3FTx toxin genes.</p> <p>Conclusions</p> <p>Based on the toxin ESTs and 3FTx gene sequences, the major components of <it>B. multicinctus </it>venom transcriptome are neurotoxins, including long chain alpha neurotoxins (<it>Ξ±</it>-ntx) and the recently originated <it>Ξ² </it>bungarotoxin, whereas the <it>N. atra </it>venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain <it>Ξ±</it>-ntx). The data also revealed that tandem duplications contributed the most to the expansion of toxin multigene families. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (<it>dN</it>/<it>dS</it>) indicates that not only multigene toxin families but also other less abundant toxins might have been under rapid diversifying evolution.</p

    Combinations of Ξ²-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Get PDF
    Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as Ξ²-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with Ξ²-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with Ξ²-lactams (penicillin, amoxicillin or flucloxacillin) in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We demonstrated that plectasin strongly rejuvenates the therapeutic potencies of existing antibiotics in vitro and in vivo. This is a novel strategy that can have major clinical implications in our fight against bacterial infections

    Discrimination exposure and DNA methylation of stress-related genes in Latina mothers

    Get PDF
    Β© 2018 Elsevier Ltd. Latina mothers, who have the highest fertility rate among all ethnic groups in the US, are often exposed to discrimination. The epigenetic changes related to this discrimination are largely unknown. This study is the first to explore the relationship between discrimination and DNA methylation of stress regulatory genes in Latinas. Our sample was Latina women (n = 147) with a mean age of 27.6 years who were assessed at 24–32 weeks’ gestation (T1) and 4–6 weeks postpartum (T2) and reside in the U.S. Blood was collected at T1, and the Everyday Discrimination Scale (EDS) was administered at T1 and T2. DNA Methylation at candidate gene regions was determined by bisulphite pyrosequencing. Associations between EDS and DNA methylation were assessed via zero-inflated Poisson models, adjusting for covariates and multiple-test comparisons. Discrimination was negatively associated with methylation at CpG sites within the glucocorticoid receptor (NR3C1) and brain-derived neurotrophic factor (BDNF) genes that were consistent over time. In addition, discrimination was negatively associated with methylation of a CpG in the glucocorticoid binding protein (FKBP5) at T1 but not at T2. This study underscores associations between discrimination and epigenetic markers of DNA methylation in Latinas that warrant further investigation to better understand the biological pathways and psychopathological effects of discrimination on Latina mothers and their families

    Large Scale Structure of the Universe

    Full text link
    Galaxies are not uniformly distributed in space. On large scales the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large scale structure on galaxy properties such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets, Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume editor W. C. Keel, v2 includes additional references, updated to match published versio

    Can ultrasound be used to stimulate nerve tissue?

    Get PDF
    BACKGROUND: The stimulation of nerve or cortical tissue by magnetic induction is a relatively new tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation (TMS), for example, has been used for the functional mapping of the motor cortex and may have potential for treating a variety of brain disorders. METHODS AND RESULTS: A new method of stimulating active tissue is proposed by propagating ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An analytical derivation is given for the electric field distribution induced by a collimated ultrasonic beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the upper range of diagnostic intensities. This field strength is about an order of magnitude lower than fields typically associated with TMS; however, the electric field gradients induced by ultrasound can be quite high (about 60 kV/m(2 )at 4 MHz), which theoretically play a more important role in activation than the field magnitude. The latter value is comparable to TMS-induced gradients. CONCLUSION: The proposed method could be used to locally stimulate active tissue by inducing an electric field in regions where the ultrasound is focused. Potential advantages of this method compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved at greater depths in the brain than is currently possible with TMS

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours

    Get PDF
    The mitochondrial lipidome influences ETC (electron transport chain) and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma), both syngeneic with the C57BL/6J (B6) mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production

    Effects of Low-Dose Drinking Water Arsenic on Mouse Fetal and Postnatal Growth and Development

    Get PDF
    Β© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e38249, doi:10.1371/journal.pone.0038249.Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations.This work was supported by National Institute of Environmental Health Sciences at the National Institutes of Health grants 1F32 ES019070 (CDK-H) and P42 ES007373 (BPJ, JWH, RIE and CDK-H, Dartmouth Superfund Research Program Project Grant, Project 2 and Pilot Project)
    • …
    corecore