325 research outputs found

    Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome

    Get PDF
    Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study

    Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Get PDF
    MicroRNAs (miRNAs) regulate gene expression by binding mRNA transcripts and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized in silico bioinformatic analysis to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n=847) were identified and promoter regions were defined as −1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n=128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants

    Metabolites of 2,3-diketogulonate delay peroxidase action and induce non-enzymic H2O2 generation : Potential roles in the plant cell wall

    Get PDF
    A proportion of the plant's L-ascorbate (vitamin C) occurs in the apoplast, where it and its metabolitesmay act as pro-oxidants and anti-oxidants. One ascorbate metabolite is 2,3-dilcetogulonate (DKG), preparations of which can non-enzymically generate H2O2 and delay peroxidase action on aromatic substrates. As DKG itself generates several by-products, we characterised these and their ability to generate H2O2 and delay peroxidase action. DKG preparations rapidly produced a by-product, compound (1), with lambda(max) 271 and 251 nm at neutral and acidic pH respectively. On HPLC, (1) co-eluted with the major H2O2-generating and peroxidase-delaying principle. Compound (1) was slowly destroyed by ascorbate oxidase, and was less stable at pH 6 than at pH 1. Electrophoresis of an HPLC-enriched preparation of (1) suggested a strongly acidic (pK(a) approximate to 2.3) compound. Mass spectrometry suggested that un-ionised (1) has the formula C6H6O5, i.e. it is a reduction product of DKG (C6H8O7). In conclusion, compound (1) is the major H2O2-generating, peroxidase-delaying principle formed non-enzymically from DKG in the pathway ascorbate -> dehydroascorbic acid -> DKG -> (1). We hypothesise that (1) generates apoplastic H2O2 (and consequently hydroxyl radicals) and delays cell-wall crosslinking - both these effects favouring wall loosening, and possibly playing a role in pathogen defence. (C) 2017 The Authors. Published by Elsevier Inc.Peer reviewe

    Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges

    Get PDF
    Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are alterations to an individual's genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed

    miRNAs as common regulators of the transforming growth factor (TGF)-β pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia

    Get PDF
    Preeclampsia (PE) is a pregnancy disorder characterized by high blood pressure and proteinuria that can cause adverse health effects in both mother and fetus. There is no current cure for PE other than delivery of the fetus. While the etiology is unknown, poor placentation of the placenta due to aberrant signaling of growth and angiogenic factors has been postulated as causal factors of PE. In addition, environmental contaminants, such as the metal cadmium (Cd), have been linked to placental toxicity and increased risk of developing PE. Here, we use a translational study design to investigate genomic and epigenomic alterations in both placentas and placental trophoblasts, focused on the angiogenesis-associated transforming growth factor-beta (TGF-β) pathway. Genes within the TGF-β pathway displayed increased expression in both the preeclamptic placenta and Cd-treated trophoblasts. In addition, miRNAs that target the TGF-β pathway were also significantly altered within the preeclamptic placenta and Cd-treated trophoblasts. Integrative analysis resulted in the identification of a subset of Cd-responsive miRNAs, including miR-26a and miR-155, common to preeclamptic placentas and Cd-treated trophoblasts. These miRNAs have previously been linked to PE and are predicted to regulate members of the TGF-β pathway. Results from this study provide future targets for PE treatment

    miRNAs as common regulators of the transforming growth factor (TGF)-β pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia

    Get PDF
    Preeclampsia (PE) is a pregnancy disorder characterized by high blood pressure and proteinuria that can cause adverse health effects in both mother and fetus. There is no current cure for PE other than delivery of the fetus. While the etiology is unknown, poor placentation of the placenta due to aberrant signaling of growth and angiogenic factors has been postulated as causal factors of PE. In addition, environmental contaminants, such as the metal cadmium (Cd), have been linked to placental toxicity and increased risk of developing PE. Here, we use a translational study design to investigate genomic and epigenomic alterations in both placentas and placental trophoblasts, focused on the angiogenesis-associated transforming growth factor-beta (TGF-β) pathway. Genes within the TGF-β pathway displayed increased expression in both the preeclamptic placenta and Cd-treated trophoblasts. In addition, miRNAs that target the TGF-β pathway were also significantly altered within the preeclamptic placenta and Cd-treated trophoblasts. Integrative analysis resulted in the identification of a subset of Cd-responsive miRNAs, including miR-26a and miR-155, common to preeclamptic placentas and Cd-treated trophoblasts. These miRNAs have previously been linked to PE and are predicted to regulate members of the TGF-β pathway. Results from this study provide future targets for PE treatment

    The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA

    Get PDF
    BACKGROUND: Upon exposure to agents that damage DNA, Saccharomyces cerevisiae undergo widespread reprogramming of gene expression. Such a vast response may be due not only to damage to DNA but also damage to proteins, RNA, and lipids. Here the transcriptional response of S. cerevisiae specifically induced by DNA damage was discerned by exposing S. cerevisiae to a panel of three "radiomimetic" enediyne antibiotics (calicheamicin γ(1)(I), esperamicin A1 and neocarzinostatin) that bind specifically to DNA and generate varying proportions of single- and double-strand DNA breaks. The genome-wide responses were compared to those induced by the non-selective oxidant γ-radiation. RESULTS: Given well-controlled exposures that resulted in similar and minimal cell death (~20–25%) across all conditions, the extent of gene expression modulation was markedly different depending on treatment with the enediynes or γ-radiation. Exposure to γ-radiation resulted in more extensive transcriptional changes classified both by the number of genes modulated and the magnitude of change. Common biological responses were identified between the enediynes and γ-radiation, with the induction of DNA repair and stress response genes, and the repression of ribosomal biogenesis genes. Despite these common responses, a fraction of the response induced by gamma radiation was repressed by the enediynes and vise versa, suggesting that the enediyne response is not entirely "radiomimetic." Regression analysis identified 55 transcripts with gene expression induction associated both with double- or single-strand break formation. The S. cerevisiae "DNA damage signature" genes as defined by Gasch et al. [1] were enriched among regulated transcripts associated with single-strand breaks, while genes involved in cell cycle regulation were associated with double-strand breaks. CONCLUSION: Dissection of the transcriptional response in yeast that is specifically signaled by DNA strand breaks has identified that single-strand breaks provide the signal for activation of transcripts encoding proteins involved in the DNA damage signature in S. cerevisiae, and double-strand breaks signal changes in cell cycle regulation genes

    Disruption of MicroRNA Expression in Human Airway Cells by Diesel Exhaust Particles Is Linked to Tumorigenesis-Associated Pathways

    Get PDF
    BackgroundParticulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expression patterns in diseased versus healthy tissue, little is known regarding whether environmental agents can induce such changes.ObjectivesWe used diesel exhaust particles (DEP), the largest source of emitted airborne PM, to investigate pollutant-induced changes in miRNA expression in airway epithelial cells. We hypothesized that DEP exposure can lead to disruption of normal miRNA expression patterns, representing a plausible novel mechanism through which DEP can mediate disease initiation.MethodsHuman bronchial epithelial cells were grown at air–liquid interface until they reached mucociliary differentiation. After treating the cells with 10 μg/cm2 DEP for 24 hr, we analyzed total RNA for miRNA expression using microarray profile analysis and quantitative real-time polymerase chain reaction.ResultsDEP exposure changed the miRNA expression profile in human airway epithelial cells. Specifically, 197 of 313 detectable miRNAs (62.9%) were either up-regulated or down-regulated by 1.5-fold. Molecular network analysis of putative targets of the 12 most altered miRNAs indicated that DEP exposure is associated with inflammatory responses pathways and a strong tumorigenic disease signature.ConclusionsAlteration of miRNA expression profiles by environmental pollutants such as DEP can modify cellular processes by regulation of gene expression, which may lead to disease pathogenesis
    corecore