60 research outputs found

    Berberine was neuroprotective against an in vitro model of brain ischemia: Survival and apoptosis pathways involved

    Get PDF
    AbstractBerberine is an alkaloid derived from herb the Berberis sp. and has long-term use in Oriental medicine. Studies along the years have demonstrated its beneficial effect in various neurodegenerative and neuropsychiatric disorders. The subject of this study was to evaluate whether berberine protects against delayed neuronal cell death in organotypic hippocampal culture (OHC) exposed to oxygen and glucose deprivation (OGD) and the cell signaling mechanism related to its effect. Hippocampal slices were obtained from 6 to 8-days-old male Wistar rat and cultured for 14 days. Following, the cultures were exposed for 1h to OGD and then treated with Berberine (10 and 20μM). After 24h recovery, propidium iodide (PI) uptake was analyzed and a decrease was observed in PI uptake on OGD Ber-treated culture, which means a decrease in cellular death. Western blot analysis showed that proteins Akt, GSK3β, ERK and JNK appear to play a role in berberine-mediated neuroprotection. Furthermore, capase-3 activity of OGD Ber-treated culture was diminished by control level in a fluorimetry assay. These findings suggest that berberine-mediated neuroprotection after ischemia involves Akt/GSK3β/ERK 1/2 survival/apoptotic signaling pathway as well as JNK and caspase-3 activity inhibition

    Citotoxicidade dos peptídeos Aβ1-42 e Aβ25-35 em cultura organotípica de hipocampo de ratos

    Get PDF
    A Doença de Alzheimer (DA) é a mais comum desordem neurodegenerativa relacionada à idade. Os sintomas clínicos resultam da deterioração de determinadas regiões cognitivas, particularmente aquelas relacionadas à memória. Estima-se que 29 milhões de pessoas no mundo sofram de demência do tipo DA. A presença de emaranhados neurofibrilares (NFTs) intracelulares constituídos pela proteína tau hiperfosforilada e as placas extracelulares constituídas pela proteína beta-amilóide (Aβ) são características da DA. Existe uma ampla variedade de evidências genéticas, fisiológicas e bioquímicas que suportam a idéia que o peptídeo Aβ é ao menos uma das causas que originam a DA. Em diferentes modelos experimentais têm sido utilizados diversos peptídeos Aβ sintéticos para estudar os mecanismos de toxicidade envolvidos na DA. Entre os fragmentos do peptídeo Aβ utilizados, o peptídeo Aβ25-35 é considerado o mais curto fragmento tóxico exercendo efeitos neurotóxicos similares àqueles produzidos pelos peptídeos Aβ1-40 ou Aβ1-42, tais como danos no aprendizado e na memória, apoptose neuronal, disfunção colinérgica e estresse oxidativo. Este fragmento exibe significantes níveis de agregação molecular, mantendo a toxicidade observada pelo peptídeo Aβ1-42 e dessa forma representa a região biologicamente ativa do peptídeo encontrado em pacientes com DA. Assim, o peptídeo Aβ25-35 é rotineiramente usado para estabelecer modelos de DA, para estudar as propriedades neurotóxicas do peptídeo Aβ e para a triagem de fármacos neuroprotetores. Neste trabalho, nós procuramos estabelecer uma comparação entre os dois peptídeos Aβ comumente usados, Aβ1-42 e Aβ25-35 num modelo in vitro de toxicidade pelo peptídeo Aβ. Para esse propósito foram utilizadas culturas organotípicas de hipocampo de rato expostas a 25 μM do peptídeo Aβ1-42 ou a 25 μM do peptídeo Aβ25-35 durante 48h. A morte celular foi quantificada pela medida da captação do iodeto de propídeo (IP), um marcador de morte celular. Nós observamos que ambos os peptídeos Aβ apresentaram toxicidade similar, causando cerca de 39% de dano celular no hipocampo. Não houve diferença significativa na extensão da morte celular entre os peptídeos Aβ1-42 e Aβ25-35, indicando que ambos causaram um efeito tóxico similar. Além disso, nós avaliamos a ativação de caspase 3, uma proteína executora chave na apoptose, por Western blotting. A exposição a 25 μM dos peptídeos Aβ1-42 ou Aβ25-35 por 48h aumentou significativamente a quantidade de caspase 3 clivada quando comparado às fatias controles não expostas aos peptídeos. Além disso, não houve diferenças entre os níveis de caspase 3 clivada induzida pelos peptídeos Aβ1-42 e Aβ25-35. Nós também não observamos efeito de ambos os peptídeos na fosforilação das proteínas PTEN e Akt; porém, de modo contrário, a percentagem de fosforilação da proteína GSK-3β foi aumentada por ambos os peptídeos Aβ. Neste trabalho, nós também avaliamos o efeito do tratamento prévio das culturas com 25 μM de resveratrol. O tratamento das culturas por 72h com resveratrol antes da exposição ao peptídeo Aβ25-35 parece exercer efeito neuroprotetor. Embora mais estudos sejam necessários para entender os mecanismos da toxicidade do peptídeo Aβ, nossos resultados fornecem fortes evidências de que o peptídeo Aβ1-42 e o fragmento sintético Aβ25-35 induzem dano celular de maneira semelhante.Alzheimer’s disease (AD) is the most commom age-related neurodegenerative disorder. The clinical symptoms result from deterioration of selective cognitive domains, particularly those related to memory. It is estimated that 29 million people worldwide suffer from dementia like AD. The presence of intracelular neurofibrilary tangles (NFTs) of the hyperphosphorylated protein tau and extracellular amyloid-beta (Aβ) protein into plaques are the hallmarks of AD. There is a plethora of genetic, physiological and biochemical evidences that supports the idea that Aβ is at least one of the originating causes of the AD. Several synthetic Aβ peptides have been used to study the mechanisms of toxicity involved in AD. Among the Aβ fragments studied so far, the Aβ25-35 peptide is considered the shorter toxic fragment exerting neurotoxic effects similar to those produced by Aβ1-40 or Aβ1-42 peptides, such as learning and memory impaired, neuronal apoptosis, cholinergic dysfunction, and oxidative stress. Therefore, this peptide exhibits significant levels of molecular aggregation, retaining the toxicity of the full-length peptide and representing the biologically active region of Aβ1-42 peptide. Thus Aβ25-35 peptide is communly used to establish the AD model for the study of the neurotoxic properties of Aβ peptide and drug screening. In this work, we sought to establish the comparison between two commonly used Aβ peptides Aβ1-42 and Aβ25-35 on an in vitro model of Aβ toxicity. For this purpose, we used organotypic slice cultures of rat hippocampus exposed to 25 μM of both Aβ peptides for 48h. Cell death was quantified by measuring propidium iodide (PI) uptake, a marker of necrotic dead cell. We observed that both Aβ peptides caused about 39% of cell damage in hippocampus. There were no significant cell death differences between Aβ1-42 and Aβ25-35 peptides, indicating that both caused the similar toxic effect. Moreover, we evaluated the caspase-3 activation, a key executor in apoptosis, by Western blotting. The exposure to 25 μM of Aβ1-42 or Aβ25-35 peptides for 48h significantly increased the amount of cleaved-caspase-3 when compared to control slice cultures not exposed to peptides. Besides, there were no statistical differences between cleaved-caspase-3 induced by Aβ1-42 and Aβ25-35 peptides. In addition, we did not observe any effect of both peptides on PTEN and Akt phosphorylation; otherwise the phosphorylation of GSK-3β was increased by both Aβ peptides. In this work, we also evaluated the effects of treatment with 25 μM of resveratrol on cell death induced by 25 μM of Aβ25-35 peptide. The treatment of cultures for 72h with resveratrol before the Aβ25-35 peptide exposure seems to exert neuroprotective effects. Although further studies are necessary for understanding the mechanisms underlying Aβ peptide toxicity, our results provide strong evidence that Aβ1-42 and the synthetic fragment Aβ25-35 peptides induce neuronal injury in a similar pattern

    Resveratrol : incorporação em nanocápsulas e neuroproteção na toxicidade induzida pelo peptídeo β-amilóide

    Get PDF
    A doença de Alzheimer (DA) é uma devastadora desordem neurológica que afeta mais de 37 milhões de pessoas ao redor do mundo, caracterizada pelo progressivo dano cognitivo e pela perda da memória. Estas alterações clínicas são acompanhadas por alterações histológicas cerebrais características da doença, as quais incluem atrofia cerebral, perda de neurônios e disfunção sináptica secundárias à deposição extracelular do peptídeo beta-amilóide (Aβ) e à deposição intracelular de emaranhados neurofibrilares constituídos da proteína tau. Fármacos disponíveis para a terapia da DA apresentam efeito limitado e tratamentos utilizando um único medicamento ou a combinação de terapias que possam efetivamente parar ou modificar o curso da doença ainda não se encontram disponíveis. O resveratrol, um polifenol de origem vegetal, tem atraído considerável interesse devido aos seus potenciais benefícios à saúde humana. Diversos estudos têm demonstrado que o resveratrol possui propriedades anti-amiloidogênicas; entretanto, os efeitos biológicos in vivo do resveratrol são fortemente limitados devido a sua baixa biodisponibilidade, a qual representa uma barreira no desenvolvimento de aplicações terapêuticas do resveratrol. Neste contexto, o objetivo deste estudo foi desenvolver uma nova formulação capaz de superar a baixa solubilidade, a limitada estabilidade, a elevada metabolização e a baixa biodisponibilidade do resveratrol e avaliar o seu efeito frente à toxicidade induzida pelo Aβ em modelos in vitro e in vivo. Inicialmente, o isômero trans do resveratrol foi incorporado em nanocápsulas poliméricas de núcleo lipídico (RSV-LNC) e a distribuição destas nanocápsulas nos tecidos cerebral, hepático e renal foi avaliada após a administração intraperitoneal (i.p.) ou por gavagem em ratos saudáveis. As nanocápsulas apresentaram elevada capacidade de encapsulamento do resveratrol e animais tratados com RSV-LNC exibiram maior concentração do resveratrol no cérebro, no fígado e no rim quando comparados aos animais tratados com resveratrol livre (RSV) após administrações diárias pelas vias i.p. ou gavagem. Na sequência, nós comparamos o efeito do tratamento com RSV e RSV-LNC frente à toxicidade induzida pelo Aβ através da exposição de culturas organotípicas de hipocampo ao Aβ1-42 por 48 h. Tanto o tratamento prévio quanto o simultâneo das culturas com RSV ou RSV-LNC reduziram significativamente a morte celular induzida pelo Aβ, com o RSV-LNC apresentando efeito mais pronunciado. O pré-tratamento com ambos, RSV ou RSV-LNC, preveniu a produção de espécies reativas de oxigênio; entretanto, o tratamento simultâneo com RSV não protegeu as culturas do dano oxidativo. Ambos os tratamentos, prévio e simultâneo, com RSV-LNC bloquearam a neuroinflamação desencadeada pelo Aβ de maneira sustentada. Além disso, apenas os tratamentos com RSV-LNC foram capazes de aumentar a liberação da IL-10 mesmo na presença do Aβ e prevenir/reduzir a ativação glial e a fosforilação da JNK. Finalmente, nós avaliamos o efeito do resveratrol frente à toxicidade induzida pelo Aβ através da injeção intracerebroventricular do Aβ1-42 em ratos. Nós observamos que os animais que foram injetados com o Aβ1-42 exibiram um significativo défcit na memória, o qual foi acompanhado pela significativa redução nos níveis da sinaptofisina no hipocampo. É importante ressaltar que através do uso das nanocápsulas o resveratrol foi capaz de reduzir estes efeitos deletérios do Aβ1-42 enquanto o tratamento com RSV não foi capaz de proteger da toxicidade induzida pelo Aβ, o que pode ser explicado pelo robusto aumento na biodisponibilidade cerebral do resveratrol atingida pelo uso das nanocápsulas. Adicionalmente, a ativação astrocitária e microglial, bem como fosforilação da JNK desencadeada pelo Aβ foram reduzidas somente após o tratamento com RSV-LNC, enquanto ambos os tratamentos com RSV e RSV-LNC foram capazes de reestabelecer os distúrbios na sinalização mediada pela GSK-3β e a desestabilização da β-catenina desencadeadas pelo Aβ. Juntos, nossos resultados não somente confirmam o potencial do resveratrol no tratamento dos processos neurodegenerativos como também oferecem uma via efetiva para melhorar o efeito neuroprotetor do resveratrol através de um sistema nanocarreador. Estes resultados fornecem suporte para futuros estudos objetivando o entendimento dos mecanismos envolvidos no efeito neuroprotetor do resveratrol. Além disso, a combinação do resveratrol com o sistema de entrega mediado por nanocápsulas poliméricas de núcleo lipídico abrem novas possibilidades para o tratamento da doença de Alzheimer.Alzheimer's disease (AD) is a devastating neurological disorder that affects more than 37 million people worldwide, characterized clinically by progressive impairments in cognition and memory. These clinical features are accompanied by characteristic histological changes in the brain, which include brain atrophy, loss of neurons and loss of synaptic function secondary to extracellular deposition of amyloid-beta peptide (Aβ) and intracellular deposition of neurofibrillary tangle composed of the microtubule-associated protein tau. Available drugs for AD therapy have small effect sizes and we still not have a single treatment or combination therapy that can effectively stop or reverse the relentless progression of AD. Resveratrol, a naturally occurring polyphenol, has attracted considerable interest for its beneficial potentials for human health. Several studies have been shown that resveratrol is associated with anti-amyloidogenic properties; however, the in vivo biological effects of resveratrol appear strongly limited by its low bioavailability, which is a barrier to the development of therapeutic applications. In this context, the present study was designed to develop a novel resveratrol formulation to overcome its poor solubility, limited stability, high metabolization and weak bioavailability, and to evaluate the effects of resveratrol against in vitro and in vivo Aβ-induced toxicity. Initially, trans-resveratrol was loaded into lipid-core nanocapsules (RSV-LNC) and the nanocapsule distribution in brain, liver and kidney tissues was evaluated by intraperitoneal (i.p.) and gavage routes in healthy rats. Lipid-core nanocapsules showed high entrapment of resveratrol and animals treated with RSV-LNC displayed a higher resveratrol concentration in the brain, the liver and the kidney than those treated with free resveratrol (RSV) after daily i.p. or gavage administration. Next, we compared the effects of RSV and RSV-LNC treatment against Aβ-induced toxicity by expositing organotypic hippocampal cultures to Aβ1-42 by 48 h. Pre- and co-treatment of cultures with both, RSV and RSV-LNC, significantly attenuated Aβ-induced cell death, with RSV-LNC showing somewhat higher potency. Reactive oxygen species formation was prevented by pretreatment with both RSV or RSV-LNC; however, co-treatment with RSV failed to protect cultures from oxidative damage. Pre- and co-treatment with RSV-LNC was able to block the neuroinflammation triggered by Aβ in a sustained pattern. Furthermore, only RSV-LNC treatments were able to increase IL-10 release even in the presence of Aβ, and prevent/decrease glial activation and JNK phosphorylation. Finally, we evaluated the effects of resveratrol against Aβ-induced toxicity by using an intracerebroventricular injection of Aβ1-42 model in rats. We found that Aβ1-42-injected animals showed a significant impairment on learning-memory ability, which was paralleled by a significant decrease in hippocampal synaptophysin levels. Noteworthy, by using lipid-core nanocapsules, resveratrol was able to rescue these deleterious effects of Aβ1-42 while treatment with RSV failed to protect against Aβ-induced toxicity, which can be explained by robust increase of brain bioavailability of resveratrol achieved by lipid-core nanocapsules. Additionally, activated astrocytes and microglial cells, as well as JNK phosphorylation triggered by Aβ was reduced only after RSV-LNC treatment, while both RSV and RSV-LNC treatments were able to restore the disturbance in GSK-3β signaling and destabilization of β-catenin triggered by Aβ. Taken together, our results not only confirm the potential of resveratrol in treating neurodegenerative processes but also offer an effective way to improve the neuroprotective efficiency of resveratrol by nanocarrier delivery system. These findings provide further support for future studies aiming at precisely understanding of mechanisms involved in the neuroprotective effects of resveratrol. Furthermore, the combination of resveratrol and lipidcore nanocapsules-based delivery system may open new avenues for the treatment of Alzheimer’s disease

    Citotoxicidade dos peptídeos Aβ1-42 e Aβ25-35 em cultura organotípica de hipocampo de ratos

    Get PDF
    A Doença de Alzheimer (DA) é a mais comum desordem neurodegenerativa relacionada à idade. Os sintomas clínicos resultam da deterioração de determinadas regiões cognitivas, particularmente aquelas relacionadas à memória. Estima-se que 29 milhões de pessoas no mundo sofram de demência do tipo DA. A presença de emaranhados neurofibrilares (NFTs) intracelulares constituídos pela proteína tau hiperfosforilada e as placas extracelulares constituídas pela proteína beta-amilóide (Aβ) são características da DA. Existe uma ampla variedade de evidências genéticas, fisiológicas e bioquímicas que suportam a idéia que o peptídeo Aβ é ao menos uma das causas que originam a DA. Em diferentes modelos experimentais têm sido utilizados diversos peptídeos Aβ sintéticos para estudar os mecanismos de toxicidade envolvidos na DA. Entre os fragmentos do peptídeo Aβ utilizados, o peptídeo Aβ25-35 é considerado o mais curto fragmento tóxico exercendo efeitos neurotóxicos similares àqueles produzidos pelos peptídeos Aβ1-40 ou Aβ1-42, tais como danos no aprendizado e na memória, apoptose neuronal, disfunção colinérgica e estresse oxidativo. Este fragmento exibe significantes níveis de agregação molecular, mantendo a toxicidade observada pelo peptídeo Aβ1-42 e dessa forma representa a região biologicamente ativa do peptídeo encontrado em pacientes com DA. Assim, o peptídeo Aβ25-35 é rotineiramente usado para estabelecer modelos de DA, para estudar as propriedades neurotóxicas do peptídeo Aβ e para a triagem de fármacos neuroprotetores. Neste trabalho, nós procuramos estabelecer uma comparação entre os dois peptídeos Aβ comumente usados, Aβ1-42 e Aβ25-35 num modelo in vitro de toxicidade pelo peptídeo Aβ. Para esse propósito foram utilizadas culturas organotípicas de hipocampo de rato expostas a 25 μM do peptídeo Aβ1-42 ou a 25 μM do peptídeo Aβ25-35 durante 48h. A morte celular foi quantificada pela medida da captação do iodeto de propídeo (IP), um marcador de morte celular. Nós observamos que ambos os peptídeos Aβ apresentaram toxicidade similar, causando cerca de 39% de dano celular no hipocampo. Não houve diferença significativa na extensão da morte celular entre os peptídeos Aβ1-42 e Aβ25-35, indicando que ambos causaram um efeito tóxico similar. Além disso, nós avaliamos a ativação de caspase 3, uma proteína executora chave na apoptose, por Western blotting. A exposição a 25 μM dos peptídeos Aβ1-42 ou Aβ25-35 por 48h aumentou significativamente a quantidade de caspase 3 clivada quando comparado às fatias controles não expostas aos peptídeos. Além disso, não houve diferenças entre os níveis de caspase 3 clivada induzida pelos peptídeos Aβ1-42 e Aβ25-35. Nós também não observamos efeito de ambos os peptídeos na fosforilação das proteínas PTEN e Akt; porém, de modo contrário, a percentagem de fosforilação da proteína GSK-3β foi aumentada por ambos os peptídeos Aβ. Neste trabalho, nós também avaliamos o efeito do tratamento prévio das culturas com 25 μM de resveratrol. O tratamento das culturas por 72h com resveratrol antes da exposição ao peptídeo Aβ25-35 parece exercer efeito neuroprotetor. Embora mais estudos sejam necessários para entender os mecanismos da toxicidade do peptídeo Aβ, nossos resultados fornecem fortes evidências de que o peptídeo Aβ1-42 e o fragmento sintético Aβ25-35 induzem dano celular de maneira semelhante.Alzheimer’s disease (AD) is the most commom age-related neurodegenerative disorder. The clinical symptoms result from deterioration of selective cognitive domains, particularly those related to memory. It is estimated that 29 million people worldwide suffer from dementia like AD. The presence of intracelular neurofibrilary tangles (NFTs) of the hyperphosphorylated protein tau and extracellular amyloid-beta (Aβ) protein into plaques are the hallmarks of AD. There is a plethora of genetic, physiological and biochemical evidences that supports the idea that Aβ is at least one of the originating causes of the AD. Several synthetic Aβ peptides have been used to study the mechanisms of toxicity involved in AD. Among the Aβ fragments studied so far, the Aβ25-35 peptide is considered the shorter toxic fragment exerting neurotoxic effects similar to those produced by Aβ1-40 or Aβ1-42 peptides, such as learning and memory impaired, neuronal apoptosis, cholinergic dysfunction, and oxidative stress. Therefore, this peptide exhibits significant levels of molecular aggregation, retaining the toxicity of the full-length peptide and representing the biologically active region of Aβ1-42 peptide. Thus Aβ25-35 peptide is communly used to establish the AD model for the study of the neurotoxic properties of Aβ peptide and drug screening. In this work, we sought to establish the comparison between two commonly used Aβ peptides Aβ1-42 and Aβ25-35 on an in vitro model of Aβ toxicity. For this purpose, we used organotypic slice cultures of rat hippocampus exposed to 25 μM of both Aβ peptides for 48h. Cell death was quantified by measuring propidium iodide (PI) uptake, a marker of necrotic dead cell. We observed that both Aβ peptides caused about 39% of cell damage in hippocampus. There were no significant cell death differences between Aβ1-42 and Aβ25-35 peptides, indicating that both caused the similar toxic effect. Moreover, we evaluated the caspase-3 activation, a key executor in apoptosis, by Western blotting. The exposure to 25 μM of Aβ1-42 or Aβ25-35 peptides for 48h significantly increased the amount of cleaved-caspase-3 when compared to control slice cultures not exposed to peptides. Besides, there were no statistical differences between cleaved-caspase-3 induced by Aβ1-42 and Aβ25-35 peptides. In addition, we did not observe any effect of both peptides on PTEN and Akt phosphorylation; otherwise the phosphorylation of GSK-3β was increased by both Aβ peptides. In this work, we also evaluated the effects of treatment with 25 μM of resveratrol on cell death induced by 25 μM of Aβ25-35 peptide. The treatment of cultures for 72h with resveratrol before the Aβ25-35 peptide exposure seems to exert neuroprotective effects. Although further studies are necessary for understanding the mechanisms underlying Aβ peptide toxicity, our results provide strong evidence that Aβ1-42 and the synthetic fragment Aβ25-35 peptides induce neuronal injury in a similar pattern

    Resveratrol : incorporação em nanocápsulas e neuroproteção na toxicidade induzida pelo peptídeo β-amilóide

    Get PDF
    A doença de Alzheimer (DA) é uma devastadora desordem neurológica que afeta mais de 37 milhões de pessoas ao redor do mundo, caracterizada pelo progressivo dano cognitivo e pela perda da memória. Estas alterações clínicas são acompanhadas por alterações histológicas cerebrais características da doença, as quais incluem atrofia cerebral, perda de neurônios e disfunção sináptica secundárias à deposição extracelular do peptídeo beta-amilóide (Aβ) e à deposição intracelular de emaranhados neurofibrilares constituídos da proteína tau. Fármacos disponíveis para a terapia da DA apresentam efeito limitado e tratamentos utilizando um único medicamento ou a combinação de terapias que possam efetivamente parar ou modificar o curso da doença ainda não se encontram disponíveis. O resveratrol, um polifenol de origem vegetal, tem atraído considerável interesse devido aos seus potenciais benefícios à saúde humana. Diversos estudos têm demonstrado que o resveratrol possui propriedades anti-amiloidogênicas; entretanto, os efeitos biológicos in vivo do resveratrol são fortemente limitados devido a sua baixa biodisponibilidade, a qual representa uma barreira no desenvolvimento de aplicações terapêuticas do resveratrol. Neste contexto, o objetivo deste estudo foi desenvolver uma nova formulação capaz de superar a baixa solubilidade, a limitada estabilidade, a elevada metabolização e a baixa biodisponibilidade do resveratrol e avaliar o seu efeito frente à toxicidade induzida pelo Aβ em modelos in vitro e in vivo. Inicialmente, o isômero trans do resveratrol foi incorporado em nanocápsulas poliméricas de núcleo lipídico (RSV-LNC) e a distribuição destas nanocápsulas nos tecidos cerebral, hepático e renal foi avaliada após a administração intraperitoneal (i.p.) ou por gavagem em ratos saudáveis. As nanocápsulas apresentaram elevada capacidade de encapsulamento do resveratrol e animais tratados com RSV-LNC exibiram maior concentração do resveratrol no cérebro, no fígado e no rim quando comparados aos animais tratados com resveratrol livre (RSV) após administrações diárias pelas vias i.p. ou gavagem. Na sequência, nós comparamos o efeito do tratamento com RSV e RSV-LNC frente à toxicidade induzida pelo Aβ através da exposição de culturas organotípicas de hipocampo ao Aβ1-42 por 48 h. Tanto o tratamento prévio quanto o simultâneo das culturas com RSV ou RSV-LNC reduziram significativamente a morte celular induzida pelo Aβ, com o RSV-LNC apresentando efeito mais pronunciado. O pré-tratamento com ambos, RSV ou RSV-LNC, preveniu a produção de espécies reativas de oxigênio; entretanto, o tratamento simultâneo com RSV não protegeu as culturas do dano oxidativo. Ambos os tratamentos, prévio e simultâneo, com RSV-LNC bloquearam a neuroinflamação desencadeada pelo Aβ de maneira sustentada. Além disso, apenas os tratamentos com RSV-LNC foram capazes de aumentar a liberação da IL-10 mesmo na presença do Aβ e prevenir/reduzir a ativação glial e a fosforilação da JNK. Finalmente, nós avaliamos o efeito do resveratrol frente à toxicidade induzida pelo Aβ através da injeção intracerebroventricular do Aβ1-42 em ratos. Nós observamos que os animais que foram injetados com o Aβ1-42 exibiram um significativo défcit na memória, o qual foi acompanhado pela significativa redução nos níveis da sinaptofisina no hipocampo. É importante ressaltar que através do uso das nanocápsulas o resveratrol foi capaz de reduzir estes efeitos deletérios do Aβ1-42 enquanto o tratamento com RSV não foi capaz de proteger da toxicidade induzida pelo Aβ, o que pode ser explicado pelo robusto aumento na biodisponibilidade cerebral do resveratrol atingida pelo uso das nanocápsulas. Adicionalmente, a ativação astrocitária e microglial, bem como fosforilação da JNK desencadeada pelo Aβ foram reduzidas somente após o tratamento com RSV-LNC, enquanto ambos os tratamentos com RSV e RSV-LNC foram capazes de reestabelecer os distúrbios na sinalização mediada pela GSK-3β e a desestabilização da β-catenina desencadeadas pelo Aβ. Juntos, nossos resultados não somente confirmam o potencial do resveratrol no tratamento dos processos neurodegenerativos como também oferecem uma via efetiva para melhorar o efeito neuroprotetor do resveratrol através de um sistema nanocarreador. Estes resultados fornecem suporte para futuros estudos objetivando o entendimento dos mecanismos envolvidos no efeito neuroprotetor do resveratrol. Além disso, a combinação do resveratrol com o sistema de entrega mediado por nanocápsulas poliméricas de núcleo lipídico abrem novas possibilidades para o tratamento da doença de Alzheimer.Alzheimer's disease (AD) is a devastating neurological disorder that affects more than 37 million people worldwide, characterized clinically by progressive impairments in cognition and memory. These clinical features are accompanied by characteristic histological changes in the brain, which include brain atrophy, loss of neurons and loss of synaptic function secondary to extracellular deposition of amyloid-beta peptide (Aβ) and intracellular deposition of neurofibrillary tangle composed of the microtubule-associated protein tau. Available drugs for AD therapy have small effect sizes and we still not have a single treatment or combination therapy that can effectively stop or reverse the relentless progression of AD. Resveratrol, a naturally occurring polyphenol, has attracted considerable interest for its beneficial potentials for human health. Several studies have been shown that resveratrol is associated with anti-amyloidogenic properties; however, the in vivo biological effects of resveratrol appear strongly limited by its low bioavailability, which is a barrier to the development of therapeutic applications. In this context, the present study was designed to develop a novel resveratrol formulation to overcome its poor solubility, limited stability, high metabolization and weak bioavailability, and to evaluate the effects of resveratrol against in vitro and in vivo Aβ-induced toxicity. Initially, trans-resveratrol was loaded into lipid-core nanocapsules (RSV-LNC) and the nanocapsule distribution in brain, liver and kidney tissues was evaluated by intraperitoneal (i.p.) and gavage routes in healthy rats. Lipid-core nanocapsules showed high entrapment of resveratrol and animals treated with RSV-LNC displayed a higher resveratrol concentration in the brain, the liver and the kidney than those treated with free resveratrol (RSV) after daily i.p. or gavage administration. Next, we compared the effects of RSV and RSV-LNC treatment against Aβ-induced toxicity by expositing organotypic hippocampal cultures to Aβ1-42 by 48 h. Pre- and co-treatment of cultures with both, RSV and RSV-LNC, significantly attenuated Aβ-induced cell death, with RSV-LNC showing somewhat higher potency. Reactive oxygen species formation was prevented by pretreatment with both RSV or RSV-LNC; however, co-treatment with RSV failed to protect cultures from oxidative damage. Pre- and co-treatment with RSV-LNC was able to block the neuroinflammation triggered by Aβ in a sustained pattern. Furthermore, only RSV-LNC treatments were able to increase IL-10 release even in the presence of Aβ, and prevent/decrease glial activation and JNK phosphorylation. Finally, we evaluated the effects of resveratrol against Aβ-induced toxicity by using an intracerebroventricular injection of Aβ1-42 model in rats. We found that Aβ1-42-injected animals showed a significant impairment on learning-memory ability, which was paralleled by a significant decrease in hippocampal synaptophysin levels. Noteworthy, by using lipid-core nanocapsules, resveratrol was able to rescue these deleterious effects of Aβ1-42 while treatment with RSV failed to protect against Aβ-induced toxicity, which can be explained by robust increase of brain bioavailability of resveratrol achieved by lipid-core nanocapsules. Additionally, activated astrocytes and microglial cells, as well as JNK phosphorylation triggered by Aβ was reduced only after RSV-LNC treatment, while both RSV and RSV-LNC treatments were able to restore the disturbance in GSK-3β signaling and destabilization of β-catenin triggered by Aβ. Taken together, our results not only confirm the potential of resveratrol in treating neurodegenerative processes but also offer an effective way to improve the neuroprotective efficiency of resveratrol by nanocarrier delivery system. These findings provide further support for future studies aiming at precisely understanding of mechanisms involved in the neuroprotective effects of resveratrol. Furthermore, the combination of resveratrol and lipidcore nanocapsules-based delivery system may open new avenues for the treatment of Alzheimer’s disease
    corecore