235 research outputs found

    Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow Core Photonic Crystal Fibers

    Full text link
    Broadband-tunable sources of circularly-polarized light are crucial in fields such as laser science, biomedicine and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components, and are limited by the availability of suitably transparent crystals and glasses. Although gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path-lengths, and high Raman conversion efficiency, it is unable to preserve circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on helically-twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining circular polarization state against external perturbations. This makes it possible to generate pure circularly-polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with fully-controllable polarization state.Comment: 5 pages, 4 figure

    Continuously wavelength-tunable high harmonic generation via soliton dynamics

    Full text link
    We report generation of high harmonics in a gas-jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas-jet is placed directly at the fiber output. As the energy increases the ionization-induced soliton blue-shift is transferred to the high harmonics, leading to a emission bands that are continuously tunable from 17 to 45 eV

    Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    Get PDF
    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber and does not require any advanced post-processing of the fiber. Strain sensitivity of -0.23 pm/mu epsilon is achieved experimentally and numerical simulations reveal that for the present fiber the sensitivity can be increased to -4.46 pm/mu epsilon by optimizing the pump wavelength and power. (C) 2012 Optical Society of Americ

    Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in noble-gas-filled hollow-core photonic crystal fiber

    Full text link
    We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near-infrared, spanning at least 113 to 1000 nm (i.e., 11 to 1.2 eV), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is a novel and previously undiscovered interaction between dispersive-wave emission and plasma-induced blueshifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, which modeling shows to be coherent and possess a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 attosecond duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses, through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1% and VUV pulse energies in excess of 50 nJ.Comment: 7 pages, 5 figure

    Low-noise supercontinuum generation in chiral all-normal dispersion photonic crystal fibers

    Full text link
    We present the advantages of supercontinuum generation in chiral, therefore circularly birefringent, all-normal dispersion fibers. Due to the absence of nonlinear power transfer between the polarization eigenstates of the fiber, chiral all-normal dispersion fibers do not exhibit any polarization instabilities and thus are an ideal platform for low-noise supercontinuum generation. By pumping a chiral all-normal dispersion fiber at 802 nm, we obtained an octave-spanning, robustly circularly polarized supercontinuum with low-noise.Comment: 4 pages, 5 figure
    corecore