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We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and
anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured
optical fiber. The sensor thus uses the inherent nonlinearity of the fiber and does not require any advanced post-
processing of the fiber. Strain sensitivity of −0.23 pm∕με is achieved experimentally and numerical simulations re-
veal that for the present fiber the sensitivity can be increased to −4.46 pm∕με by optimizing the pump wavelength
and power. © 2012 Optical Society of America
OCIS codes: 060.2370, 060.4005, 060.4370, 060.5295, 190.4370, 190.4380.

Strain is an important physical parameter that needs to be
monitored in many areas of engineering. Various
fiber-optic schemes, including fiber gratings [1], Mach–
Zehnder interferometers [2], Sagnac interferometers [3],
and Fabry–Perot interferometers [4], have been proposed
and demonstrated for strain sensing. These sensors all use
the linear properties of the fiber and rely on either speci-
alty fibers, such as highly birefringent fibers, or postpro-
cessing of the fibers, such as grating writing.
It has been proposed to instead use the Stokes and

anti-Stokes lines generated by nonlinear degenerate
four-wave mixing (FWM) [5] in a microstructured optical
fiber (MOF) to achieve highly efficient sensing of materi-
als infiltrated into the holes [6]. The fiber-optic FWM
sensor technology can offer high sensitivity due to the
extreme sensitivity of FWM to the dispersion profile
[7] and it does not require fiber postprocessing. It was
recently verified that highly sensitive refractive index
sensing, and thus also biosensing, can indeed be
achieved with the FWM technique [6,8].
In this Letter we demonstrate experimentally a novel

fiber-optic strain sensor based on FWM in a MOF. The
operation principle is to track the Stokes wavelength
λS and/or anti-Stokes wavelength λaS (frequencies ωS

and ωaS) generated by FWM under different strain, which
changes the dispersion profile of the MOF as seen in
Fig. 1. Compared with conventional fibers, the MOF
allows tuning the zero-dispersion wavelength (ZDW) to
be close to the pump wavelength for enhancing the
FWM sensitivity. Here we choose a pump at λp �
1064 nm. We therefore use a MOF (NL-4.7-1030, NKT
Photonics A∕S) with a pitch of Λ0 � 3.15 μm, and a re-
lative hole diameter of d0∕Λ0 � 0.5, as shown in the inset
of Fig. 1. This MOF has a mode-field diameter of 3.8 μm, a
nonlinear coefficient of γ � 12 Wkm−2, and a loss of
<15 dB∕km at 1060 nm. The dispersion profile, ca-
lculated with commercial simulation software COMSOL,
is shown in Fig. 1. The unstrained ZDW is λZDW �
1027.5 nm, which means that we pump in the anomalous
dispersion regime.

The experimental setup is shown in Fig. 2. The pump is
a diode pumped, passively Q-switched Nd:YAG micro-
chip laser (SNP-13E, Teem Photonics) with specifica-
tions given in the figure. A half-wave plate controls the
reflectivity of the polarization dependent mirrors (M)
and a polarizer (P) is used as a variable attenuator. A sec-
ond half-wave plate controls the polarization before the
beam is coupled into the fiber with a microscope objec-
tive (MO). A beam splitter (BS) and a camera are used as
an aid in coupling the beam into the fiber core while the
position of the fiber is adjusted with an X-Y-Z stage (FS).
Two other stages (S) are used to strain the fiber.

The FWM gain is given by g�ω� � ��γP0�2 − �κ∕2�2�1∕2,
where κ�ω� � 2β�ωp� − β�ωS� − β�ωaS� − 2γP0 is the
phase-mismatch, γ � n2ωp∕�cAeff� is the nonlinear
parameter, n2 � 2.6 × 10−20 m2∕W is the nonlinear-index
of silica, c is the speed of light in vacuum, Aeff is the ef-
fective area, P0 is the peak power of the pump laser, and
β�ω� is the propagation constant at frequency ω [7]. The
maximum FWM gain occurs at phase-matching, where
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Fig. 1. (Color online) Calculated dispersion of the unstrained
(0 με, solid) and strained (4000 με, dashed) MOF. Insets: fiber
cross-section and experimental FWM spectra for P0 � 575 W
with strain increasing from 0 to 4000 με along the arrow.
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κ � 0. In the frequency domain this happens symmetri-
cally around the pump at one or more sets of Stokes
and anti-Stokes frequencies [9]. For our MOF there is
only one set, whose wavelengths are calculated and
shown as the solid curves of Fig. 3.
The MOF is 1.2 m long and the peak power out of the

laser is P0 � Pav∕�TFWHM · f rep� � 23.5 kW, where Pav �
0.12 W is the average power, TFWHM � 0.69 ns is the
pulse width, and f rep � 7.4 kHz is the repetition rate. To
estimate the coupling efficiency from the MO to the MOF,
we measured the power emitted from the MO and the
MOF, respectively. Neglecting transmission loss of the
only 1.2 m long MOF it was observed that the coupling
efficiency is about 65%.
We first investigate the FWM for different pump

powers (measured out of the MOF) by rotating the polar-
izer and making sure that the power is low
enough to avoid supercontinuum generation, in which
case there would be no detectable FWM peaks. As pre-
sented in Fig. 3, the experimental and theoretical results
agree well, both showing the expected increase (de-
crease) of the Stokes (anti-Stokes) wavelength with
power [5]. The power dependence of the FWM peaks
reveals that the MOF should be fixed tightly during the
strain experiments to avoid changes in the coupling
and subsequent measurement errors. We also investi-
gated the influence of input polarization by rotating the
second half-wave plate and found that the anti-Stokes
and Stokes wavelengths did not change significantly.
This means that the MOF has no significant birefringence
and that the FWM strain sensor is independent of
polarization.
When the MOF is imposed a longitudinal elongation

ΔL, one can write the axial strain as ε � ΔL∕L. The elas-
to-optic effect will induce a change in the refractive index

ofΔn � −n3
0�p12 − σ�p11 � p12��ε∕2, where p11 and p12 are

strain-optic coefficients, and σ is Poisson’s ratio [10–12].
Although the unstrained refractive index of silica n0 �

n0�ω� is well-known [5], the parameters p11, p12, and σ are
less known and depend on the fiber material, the drawing
conditions, and the wavelength. In Table 1 we present
three sets of parameters. Sets 1–2 are for a step-index
silica fiber and set 3 is for bulk fused silica. When being
elongated the cross section of the MOF will be com-
pressed, which gives a geometrical change of the disper-
sion. We calculate it by using volume conservation and
assuming that the strained fiber diameter D is constant
along the length, so that D � D0∕�1� ε�1∕2. We further
assume that the change in hole diameter d follows the
change in fiber diameter, so that d � d0∕�1� ε�1∕2, and
finally we assume that inside the MOF the hole diameter
and pitch Λ decrease in such a way that the relative hole
diameter d∕Λ � d0∕Λ0 stays constant. D0, d0, andΛ0 are
the unstrained dimensions of the MOF.

The strain-induced structural and refractive index
changes of the MOF will influence the dispersion profile
and shift the ZDW from 1027.5 to 1026.6 nm for a strain
of 4000 με, as seen in Fig. 1. This will change the spectral
location of the FWM peaks as seen in Fig. 1, which is the
sensing principle of our nonlinear strain sensor. In
our experimental study the polarizer and half-wave
plates are fixed, so that the estimated input peak power
is fixed at 575 W. An L � 0.85 m long section of the
MOF is clamped tightly between two translation
stages, as shown in Fig. 2. One stage is fixed, while
the other can move longitudinally to apply axial strain
to the fiber manually with a displacement accuracy
of 10 μm.

Figure 4(a) shows the measured and simulated spec-
tral response of the FWM peaks versus the applied strain.
The experiments show that when the strain is increased,
the anti-Stokes peak shifts to longer wavelengths with a
sensitivity of 0.20 pm∕με, and the Stokes peak shifts to
shorter wavelengths with a sensitivity of −0.23 pm∕με.
Our simulations of Sets 1–3, taking both the geometrical
and elasto-optic effect into account with a pump peak
power of 575 W, confirm the tendency, but with a lower
sensitivity of about 0.08 pm∕με and −0.09 pm∕με for the
anti-Stokes and Stokes peaks, respectively.

In Fig. 4(b) we zoom on the numerical results for the
Stokes peak to show how close the results for Sets 1–3
are. We also show two calculations with Set 1 (termed
Set 1a and 1b). In Set 1a, only the elasto-optic effect is
taken into account. Since the sensitivity for Set 1 is
approximately twice that of Set 1a, the elasto-optically
induced FWM shift is approximately the same as the
geometrically induced FWM shift. This shows that the
assumed geometry is important. In Set 1b we therefore
assume that the strained MOF has the more realistic

Fig. 2. (Color online) Sketch of the experimental setup.
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Fig. 3. (Color online) FWM peaks versus pump peak power.
Inset: measured spectra with power increasing along the arrow.

Table 1. Strain-Optic Coefficients p11 and p12,

Poisson’s Ratio σ, and Measurement Wavelength λ

Parameters p11 p12 σ λ Material

Set 1 [10] 0.113 0.252 0.16 633 nm Fiber
Set 2 [11] 0.120 0.27 0.25 1300 nm Fiber
Set 3 [12] 0.124 0.28 0.164 644 nm Bulk

March 1, 2012 / Vol. 37, No. 5 / OPTICS LETTERS 795



geometrical shape of a tapered fiber, i.e., a standard
hyperboloid of one sheet. Using again volume conserva-
tion, the fiber diameter at the center of the strained sec-
tion is then D � D0��1 − ε∕2�∕�1� ε��1∕2, which is a factor
of �1 − ε∕2�1∕2 smaller than when using the constant di-
ameter assumption. Using this reduced fiber diameter
gives a sensitivity for Set 1b, which is increased to
−0.11 pm∕με, as shown in Fig. 4(b). We believe that the
other assumptions made in calculating the geometrical
effect and the fact that the elasto-optic parameters are
not for the pure silica MOF we use, and for wavelengths
that differ significantly from 1064 nm, can explain the dif-
ference of about a factor of 2 between the numerically
and experimentally found sensitivities.
Using the present MOF as the sensing element, one can

tune the wavelength and peak power of the pump laser to
optimize the sensitivity [6]. Figure 5 shows numerical cal-
culations of the strain sensitivities based on parameter
Set 1 and the taper geometry (Set 1b). The unstrained
ZDW is marked with a vertical line. The results show that
when the pump is in the normal dispersion region (close
to the ZDW), the FWM strain sensor has the highest
sensitivity. We also see that around the optimum pump
wavelength the sensitivity increases when the pump peak
power is decreased. However, because the FWM gain is
proportional to the power [5], it cannot be decreased too
much without loosing the signal. In our experiment, the
minimum pump peak power, which could generate suffi-
ciently visible FWM peaks over 1.2 m, is about 450 W.
The numerical results predict that the maximum strain

sensitivity is −4.46 pm∕με when it is pumped at
1022.3 nm with a peak power of 450 W.

In conclusion, this is the first experimental work to de-
monstrate the feasibility of using FWM as the sensing
principle for a fiber-optic strain sensor. This sensor is
promising, because it relies on the inherent (nonlinear)
properties of the fiber and does not require postproces-
sing. The experimentally demonstrated strain sensitivity
is −0.23 pm∕με for the Stokes wavelength, which equals
that recently obtained for a MOF-based Sagnac strain
sensor [3]. Numerical calculations predict that a sensitiv-
ity of −4.46 pm∕με can be achieved by optimizing the
pump wavelength and power. This is more than four
times higher than the sensitivity of FBG sensors at
1064 nm [1]. We expect that a further increase in sensi-
tivity can be achieved by optimizing the MOF design. The
FWM strain sensor will have a cross-sensitivity to tem-
perature due to the thermo-optic coefficient of silica
(CT � 9 × 10−6∕K [1]), just as the FBG sensor, which will
be the subject of future investigations.

Bobo Gu would like to thank the support of the Chi-
nese Scholar Council (CSC). The authors wish to thank
Christian Agger and Johan R. Ott (DTU Fotonik) for help-
ful discussions on the dispersion calculations.
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Fig. 4. (Color online) (a) Measured and simulated FWM peaks
versus strain. (b) Zoom on Stokes peak for the simulations.
Parameter Sets 1–3 are given in Table 1. Sets 1a-b are explained
in the text.
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