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Abstract

The extreme spectral broadening of pulses with an initially narrow spectrum
propagating in a nonlinear medium is known as supercontinuum generation
(SCG). The SC is spatially coherent and the spectral bandwidth can span
several hundreds of nanometres. This has applications in, e.g., component
characterization, spectroscopy, optical communications, and optical coher-
ence tomography (OCT). This thesis presents a study of SCG in photonic
crystal fibres (PCFs) using numerical modelling. The nonlinear physical
mechanisms relevant for the thesis are reviewed. It is investigated how the
SC spectrum can be shaped by dispersion engineering of the PCF. This
is done in 3 different regimes: femtosecond, picosecond, and continuous-
wave (CW) pumping. Femtosecond pumping is investigated in five different
PCFs with two zero-dispersion wavelengths (ZDWs) and in tapered PCFs. It
is found that the spectral broadening is dominated by self-phase modulation
in the first millimetres of the fibre, followed by soliton red-shift. The soli-
ton red-shift is limited by the higher ZDW and the generation of dispersive
waves. The first observation of an apparent bright-bright soliton pair across
the ZDW is also reported. For picosecond pumping it is demonstrated how
the spectral width and flatness depends on nanometre scale design of the
PCF structure. CW pumping is modelled using a phase noise model to
investigate the influence of the pump spectral linewidth on the SC. The
results indicate that the broadest and smoothest spectra are obtained using
a narrow linewidth pump and a PCF with small anomalous dispersion at
the pump wavelength. It is also demonstrated how the time window of the
calculations affects the simulation results. Energy transfer during soliton
collisions is found to play an important role, and was overlooked in recent
work on CW pumped SC generation. Finally, the implications for designing
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a SC source for OCT are briefly discussed.



Resumé (Danish abstract)

Superkontinuumgenerering i fotoniske krystalfibre:
Modellering og spektral formning via styring af dispersionen

Ekstrem spektral forbredning af smalspektrede pulser, som udbreder sig i
et ulineært medium, kaldes for superkontinuumgenerering (SKG). Et SK
er rumligt kohærent og den spektrale b̊andbredde kan spænde over flere
hundrede nanometer. Dette er anvendeligt til f.eks. karakterisering af op-
tiske komponenter, spektroskopi, optisk kommunikation og optisk kohæren-
stomografi (OKT). Denne afhandling omhandler en undersøgelse af SKG
i fotoniske krystralfibre ved hjælp af numerisk modellering. De ulineære
fysiske mekanismer med relevans for afhandlingen gennemg̊as. Det un-
dersøges hvordan SK spektret kan formes via styring af krystalfiberens
dispersion. Dette gøres for 3 omr̊ader: femtosekund, pikosekund og kon-
tinuerlig pumpning. Femtosekund pumpning undersøges i fem forskellige
fotoniske krystalfibre med to nul-dispersionsbølgelængder og i s̊akaldte ta-
perede (indsnævrede) krystalfibre. Den spektrale forbredning viser sig at
være domineret af selv-fasemodulation i de første millimeter af fiberen,
efterfulgt af soliton rødskift. Soliton rødskiftet er begrænset af den
højere nul-dispersionsbølgelængde og dannelsen af dispersive bølger. Den
første observation af et tilsyneladende lys-lys soliton par p̊a tværs af nul-
dispersionsbølgelængden beskrives. Det demonstreres for pikosekund pump-
ning hvordan den spektrale bredde og fladhed afhænger af nanometerskala
design af krystalfiber strukturen. Kontinuert pumpning modelleres med
en fasestøjmodel til at undersøge indflydelsen af pumpens spektrale lin-
iebredde p̊a SK spektret. Resultaterne indikerer at de bredeste og glatteste
spektre opn̊as med en pumpe med snæver liniebredde og en krystalfiber
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med lille anomal dispersion ved pumpe bølgelængden. Det demonstreres
ogs̊a hvordan beregningernes tidsvindue p̊avirker simulerings resultaterne.
Det findes at energioverførsel under soliton kollisioner spiller en vigtig rolle,
hvilket har været overset i nylige undersøgelser af kontinuert pumpet SKG.
Til slut diskuteres kort resultaternes betydning for designet af en SK-kilde
til OKT.
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Chapter 1

Introduction

1.1 Background

Light with an initially narrow optical spectrum can undergo an extreme
spectral broadening known as supercontinuum generation (SCG), when the
light is propagating in a nonlinear medium. The phenomenon has been
known since the pioneering experiments by Alfano and Shapiro in 1970
[10, 11] (see Ref. [12] for an in-depth account of the history of SCG). Bulk
borosilicate glass was used as the nonlinear medium and a picosecond laser
as the light source. The nonlinear effects responsible for the spectral broad-
ening require a high light intensity to be efficient. This could occur in the
bulk glass due to spatial nonlinear effects resulting in self-focusing of the
beam. Improvements in the fabrication technology of optical glass fibres
in the 1970’s [13], led to the use of optical fibres as the nonlinear medium.
The advantage of this is that the beam is confined in the transverse plane of
the optical fibre, so that a high beam intensity can be sustained over larger
propagation distances. This reduced the requirement of high laser power
for efficient broadband generation [14].

Standard optical fibres consist of a cylindrical glass core surrounded by
a cladding, with the cladding having a slightly lower (∼ 0.3%) index of re-
fraction than the core [13], see Fig. 1.1 (top). In the simplified ray-picture
of light propagation, the light can be said to be confined in the core due
to total internal reflection at the interface between core and cladding [15].
Photonic crystal fibres (PCFs) offer a fundamentally different way of guid-
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Figure 1.1: Top: Standard optical fibre. Bottom: Triangular structured
PCF. The pitch Λ and air-hole diameter d are indicated. Courtesy of Kim P.
Hansen, Crystal Fibre A/S.

ing the light, namely the photonic band gap effect [16, 17]. A PCF typically
consists of silica glass and air-holes comprising a transverse microstructure
along the fibre, see Fig. 1.1 (bottom). The photonic band gap effect makes
it possible to, e.g., guide the light in a hollow air-core, surrounded by a
cladding consisting of air-holes in silica. This can be used to study nonlin-
ear effects in a gas contained in the hollow core [18]. However, the most
common type of PCF used for SCG is the index-guiding PCF, which relies on
an effective index difference between the solid silica core and the surround-
ing silica cladding with air-holes, for a modified total internal reflection
guiding mechanism [17]. This allows guidance in smaller cores than can be
achieved with standard fibres, so a higher intensity can be obtained, leading
to more efficient nonlinear effects [19]. By varying the parameters of the
microstructure, e.g., the size of the air-holes and the distance between them,
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Figure 1.2: Top: Light emitted from a PCF pumped with relatively low
power infrared light (∼ 800 nm). Bottom: The same PCF now pumped with
more power. It is seen that a significant amount of green light is generated.
Experimental setup and pictures by Peter Falk.

one can also control the dispersion of the fibre, which is a key parameter
affecting the supercontinuum (SC) spectrum [13, 20, 21]. PCFs have there-
fore been a widely used nonlinear medium for practical realizations of SCG

in recent years.

1.2 Applications

SCG makes it possible to create light sources with an optical spectrum cov-
ering several hundreds of nanometres. Such broad spectra have many both
realised and potential applications. The SC spectrum is not only broad, but
is also spatially coherent, contrary to light from, e.g., a tungsten lamp, and
consequently has higher brightness [19]. The high spectral brightness can
be apprehended from Fig. 1.2. SC sources can therefore replace the various
white-light sources used in laboratories for measuring, e.g., the wavelength
dependent attenuation of optical components over a broad spectral range.
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Applications have also been demonstrated in dispersion measurements [22],
optical communications [23], spectroscopy [24], sensors [25], and optical fre-
quency metrology [26].

In 2001, Hartl et al. demonstrated the feasibility of using SCG for opti-
cal coherence tomography (OCT) [27]. OCT is an imaging technique which
can be used to obtain micrometre-scale resolution cross-sectional images in
highly-scattering media, such as biological tissue [28]. The technique re-
lies on low temporal coherence interferometry analogous to ultrasound echo
imaging. Due to the interferometric basis of the technique, the depth res-
olution Δz of the cross-sectional image is related to the centre wavelength
λc and the full width at half-maximum (FWHM) bandwidth Δλ of the light
source as [29]

Δz =
2 ln 2

π

λ2
c

Δλ
≈ 0.44

λ2
c

Δλ
, (1.1)

if the source spectrum has an approximately Gaussian shape. In general,
the source spectrum should be relatively smooth to avoid false echoes in the
images [30].

The optimal choice of λc depends on the biological medium under in-
vestigation. To achieve a good penetration depth the 800 nm wavelength
region is optimal for OCT measurements of the eye, due to lower absorption,
while the 1300 nm region is considered optimal for measurements of highly
scattering tissue such as skin, due to lower scattering (see, e.g., Chapter 1
in Ref. [31]). To achieve higher resolution in OCT measurements of the eye,
the 1000 nm wavelength region is better suited because water has zero dis-
persion at this wavelength, and dispersion acts to smear out the OCT image
[32]. Note that, from Eq. (1.1), a Δz = 5 µm resolution with λc = 800 nm
requires a spectral bandwidth of Δλ ∼ 56 nm, while the same resolution
with λc = 1300 nm requires Δλ ∼ 149 nm bandwidth.

From the above, it is desirable to have an OCT light source with a
spectrum that is extremely broad (hundreds of nanometres), relatively
smooth and flat, and a centre wavelength adjusted to the particular OCT-
application. Furthermore, to be used in a clinical environment the light
source should also be compact. Femtosecond lasers are typically bulky and
complex, but have offered the broadest spectra used for OCT when combined
with SCG, see Fig. 1.3.

As seen from Fig. 1.3, SCG has already demonstrated its ability as a
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Figure 1.3: Examples of light sources used for OCT divided into pumping
schemes (not exhaustive).
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basis for OCT light sources. A general trend during recent years has been to
develop sources that are cheaper and more compact than systems contain-
ing a femtosecond laser, while still obtaining broad spectral bandwidth. To
support this development further, it is essential to understand the physical
mechanisms underlying the spectral broadening. In particular, it is highly
interesting to understand how parameters such as the fibre dispersion to-
gether with the nonlinear effects affect the spectrum, since PCFs provide
a unique possibility for dispersion engineering. As the control of the SCG

is improved through, e.g., dispersion engineering, the high output power
requirement of the pumping laser is expected to be reduced, so that its size
and price is also reduced further. This could extend the applicability of
SCG to much broader areas, such as projectors for the consumer electronics
market.

1.3 Scope of thesis

The goal of the Ph.D. project was to obtain a better understanding of how
to shape the SC spectrum by varying the properties of the PCF. This in-
cludes the ability to obtain spectral power in particular wavelength regions,
controlling the flatness of the spectrum, and obtaining a broad bandwidth.
Also, since clinical application of the OCT technology requires the develop-
ment of more compact and cheap sources, it has also been investigated how
the pump pulse length affects the broadening mechanisms.

Numerical modelling of the SCG process has been used to improve the
understanding of the various physical mechanisms at play. The modelling
consisted in solving a form of nonlinear Schrödinger equation (NLSE) which
describes the propagation of pulses in optical fibres. It was investigated
how the spectrum can be controlled through dispersion engineering, for
highly different pumping regimes: femtosecond, picosecond and continuous-
wave (CW) pumping.

1.4 Organization of thesis

Chapter 2 reviews the theory of nonlinear fibre optics relevant for this thesis.
The propagation equation and its numerical solution are presented. Various
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spectral broadening mechanisms are described to provide a basis for their
recognition in the following chapters. The properties and advantages of
PCFs are described, as well as the calculation of dispersion and effective
area. The chapter is concluded with some suggestions for improving the
computation speed of the numerical method.

Chapter 3 presents an investigation of SCG in PCFs with two zero-
dispersion wavelengths (ZDWs) pumped with femtosecond pulses. The dis-
tance between the ZDWs is varied by modifying the structural parameters
of the PCFs. This allows a study of the role of the higher ZDW. It is found
that the distance between the ZDWs determines whether solitons are formed,
and how far they can red-shift into the infrared before amplifying disper-
sive waves. Femtosecond pumping in a tapered fibre is also investigated.
Then the first observation of an apparent bright-bright soliton pair across
the higher ZDW is described.

The subject of Chapter 4 is picosecond pumped SCG. It is clearly shown
how changing the structural parameters of a PCF on a nanometre scale can
significantly influence the width and flatness of the SC spectrum.

Chapter 5 considers SCG using a CW or quasi-CW pump. First, the
method of modelling a partially coherent CW pump is presented. Then it
is shown that multiple femtosecond solitons are formed from the CW input,
and that much of the spectral broadening is due to a physical mechanism
also described in Chapter 3, namely soliton red-shift. It is shown that the
solitons do not red-shift until they have undergone collisions with each other,
in which energy is exchanged between the solitons. It is also demonstrated
how the numerical parameters can affect the simulation results, and how
the spectral linewidth of the CW pump affects the resulting SC spectrum.

To conclude the thesis, Chapter 6 provides a summary and discussion
of the main results obtained. A brief outlook at the future of SCG research
is also given.
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Chapter 2

Nonlinear optics in optical
fibres

The propagation of an electromagnetic (EM) wave or pulse, depends en-
tirely on the medium in which it propagates. In vacuum the pulse can
propagate unchanged. When propagating in a medium the EM field inter-
acts with the atoms of the medium. This generally means that the pulse
experiences loss and dispersion, where the latter effect occurs because the
different wavelength components of the pulse travel at different velocities
due to the wavelength dependence of the refractive index. These effects are
termed the linear response of the medium. If the intensity1 of the pulse is
high enough, it becomes possible to observe that the medium also responds
in a nonlinear way. Most notably the refractive index becomes intensity de-
pendent (the Kerr effect) and photons can interact with phonons (molecular
vibrations) of the medium (the Raman effect). These effects are the basis
for the many spectral broadening mechanisms we will investigate further in
this chapter.

In Section 2.1 the equation for modelling pulse propagation is presented.
Section 2.2 then reviews the various spectral broadening mechanisms in-
cluded in the model, that are used to explain the resulting spectra observed

1Strictly speaking, the term ‘irradiance’ would be more appropriate to avoid confusion
with the term ‘radiant intensity’ [15], but ‘intensity’ is used extensively in the literature
(e.g. [13]).
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in this work. The properties and modelling of the nonlinear medium of
interest here, photonic crystal fibres, is covered in Section 2.3. Section 2.4
describes how to solve the pulse propagation equation using the split-step
Fourier method. Finally, Section 2.5 provides some suggestions for improv-
ing the split-step Fourier method.

2.1 The generalised nonlinear Schrödinger equa-
tion

The electric field of a pulse linearly polarised along the x-axis and propa-
gating in the fundamental mode of an optical fibre can be written as [13]

EA(r, t) = x̂F (x, y)A(z, t) exp[i(β̄0z − ω0t)], (2.1)

where r = (x, y, z), x̂ is the polarisation unit vector, F (x, y) describes the
transverse field distribution, A(z, t) is the pulse envelope, and β̄0 is the
mode propagation constant β(ω) at the centre angular frequency ω0 of the
pulse. EA is scaled to the actual electric field E [V/m] according to EA =√

1
2ε0cnE, where ε0 is the vacuum permittivity, c is the speed of light in

vacuum, and n is the refractive index. This ensures that the instantaneous
optical power can be calculated as |A|2 (see Appendix A.2). The change in
pulse envelope A as the pulse propagates along the fibre axis z is described
by the generalised nonlinear Schrödinger equation (NLSE) [13, 33–35]

∂Ã

∂z
=i

∑
m≥2

β̄m

m!
[ω − ω0]

m Ã − α(ω)
2

Ã (2.2)

+ iγ(ω)
[
1 +

ω − ω0

ω0

]
F
{

A(z, T )
∫ ∞

−∞
R(T ′)

∣∣A(z, T − T ′)
∣∣2 dT ′

}
,

where F denotes the Fourier transform and Ã(z, ω) is the Fourier transform
of A(z, t),

F {A(z, t)} = Ã(z, ω) =
∫ ∞

−∞
A(z, t) exp [i (ω − ω0) t] dt, (2.3)

and the pulse envelope A(z, T ) is considered in a retarded time frame T =
t − β̄1z moving with the group velocity 1/β̄1 at the carrier frequency. The
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dispersion coefficients β̄2, β̄3, . . . , are defined from the Taylor expansion of
the mode propagation constant β(ω) [13]:

β(ω) = β̄0 + β̄1[ω − ω0] +
1
2
β̄2[ω − ω0]2 +

1
6
β̄3[ω − ω0]3 + . . . , (2.4)

where

β̄m = βm(ω0) =
(

dmβ

dωm

)
ω=ω0

. (2.5)

α(ω) is the power attenuation coefficient. γ(ω) = n2ω0/[cAeff (ω)] is the
nonlinear parameter, where n2 = 2.6 × 10−20 m2/W is the nonlinear-index
coefficient for silica2, and Aeff is the effective core area [13]. It is usually
defined as [13]

Aeff(ω) =

[∫∫∞
−∞ |F (x, y, ω)|2 dxdy

]2
∫∫∞

−∞ |F (x, y, ω)|4 dxdy
, (2.6)

but a more general definition was found by Lægsgaard et al.[36]; as explained
in Section 2.3 the more general definition is best suited for the present work.
R(t) is the Raman response function [13, 33]

R(t) =(1 − fR)δ(t) + fRhR(t) (2.7)

=(1 − fR)δ(t) + fR
τ2
1 + τ2

2

τ1τ
2
2

exp(−t/τ2) sin(t/τ1)Θ(t) (2.8)

where fR = 0.18 is the fractional contribution of the delayed Raman re-
sponse, τ1 = 12.2 fs, and τ2 = 32 fs. Θ(t) is the Heaviside step function and
δ(t) is the Dirac delta function. There exists both a parallel and an orthogo-
nally polarised delayed Raman response [37], but the orthogonal component
is generally negligible [38, 39] and therefore usually not considered, which
is also the approach taken here.

The factor [1+(ω−ω0)/ω0] in Eq. (2.2) is responsible for self-steepening
and is due to the intensity dependence of the group velocity [13].

The propagation Eq. (2.2) is often written in the time domain by ne-
glecting the frequency dependence of γ, γ = γ(ω0), and α, α = α(ω0),

2The value of n2 is slightly wavelength dependent and also depends on the pulse length
used when measuring it [13].
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and then Fourier transforming Eq. (2.2) using the Fourier transformation
replacement property ∂/∂t ↔ −i[ω − ω0] [13, 33]:

∂A

∂z
=i

∑
m≥2

imβ̄m

m!
∂mA

∂Tm
− α

2
A (2.9)

+ iγ

[
1 +

i

ω0

∂

∂T

] [
A(z, T )

∫ ∞

−∞
R(T ′)

∣∣A(z, T − T ′)
∣∣2 dT ′

]
.

It should be emphasised that the generalised NLSE is not derived under
the condition of a slowly varying envelope [33], although this is a common
misconception (e.g. [40]). It is only assumed that the nonlinearity is small,
that the backward travelling wave can be neglected, and that the bandwidth
of Ã(z, ω) is less than ≈ ω0/3 [33].

It can be shown that Eq. (2.2) conserves a quantity proportional to the
classical photon number of an optical wave [33, 34]:

∂

∂z

⎡
⎢⎣∫ Aeff(ω)

∣∣∣Ã(z, ω)
∣∣∣2

ω
dω

⎤
⎥⎦ =

∂P

∂z
= 0. (2.10)

This is used to check the numerical accuracy when solving the generalised
NLSE, which is the subject of Section 2.4.

2.2 Physical mechanisms

2.2.1 Self-phase modulation

As mentioned in the introduction of this chapter the refractive index n
of a nonlinear medium is intensity dependent. This means that the phase
velocity vp = c/n also becomes intensity dependent. This leads to self-phase
modulation (SPM) of a propagating pulse. To study the effect of SPM alone
one neglects all dispersion terms, loss, the self-steepening term (i/ω0)∂/∂T ,
the Raman effect (fR = 0), and the frequency dependence of γ(ω) by using
Eq. (2.9) to obtain [13]

∂A

∂z
= iγA |A|2 . (2.11)
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The general solution is [13]

A(z, T ) = A(0, T ) exp[iγ |A(0, T )|2 z] = A(0, T ) exp[iφ(z, T )] (2.12)

from which it is seen that the temporal pulse shape |A|2 is unchanged dur-
ing propagation. The time-dependent phase shift φ(z, T ) gives the pulse
a frequency chirp δω(T ) = −∂φ/∂T , which is negative near the leading
edge of the pulse and positive near the trailing edge of the pulse [13]. This
corresponds to a red shift and a blue shift, respectively.

To illustrate the change in pulse spectrum due to SPM alone, Eq. (2.12)
has been solved for a Gaussian input pulse [defined in Eq. (A.1)]. The re-

sulting power spectrum [defined in Eq. (A.18)] S(ν) ∝
∣∣∣Ã(z, ω)

∣∣∣2 is shown in
Fig. 2.1 (left) for different propagation distances z. Note that the spectra
are symmetric in frequency, but appear asymmetric when plotted prop-

erly on a wavelength scale, S(λ) ∝
∣∣∣Ã(z, ω = 2πc/λ)

∣∣∣2 /λ2 [Eq. (A.26)], in
Fig. 2.1 (right).

2.2.2 Solitons

In the previous subsection it was mentioned that SPM alone red-shifts the
leading edge of the pulse, while blue-shifting the trailing edge of the pulse.
In the additional presence of normal dispersion the red-shifted part of the
pulse will propagate faster than the blue-shifted part [13]. This means
that the pulse broadens more quickly in time than if only dispersion was
present. On the other hand, anomalous dispersion leads to a delay of red-
shifted pulse components and faster propagation of the blue-shifted part of
the pulse. SPM thus acts to delay the broadening of a pulse propagating in
the anomalous dispersion regime.

It turns out that it is possible for SPM and group-velocity dispersion
(GVD) to exactly balance each other, so that a pulse can propagate without
changing its shape. Neglecting all terms but those responsible for SPM and
GVD, Eq. (2.9) is rewritten as the unperturbed NLSE:

∂A

∂z
= − iβ̄2

2
∂2A

∂T 2
+ iγA |A|2 . (2.13)

There is a solution to this equation corresponding to a pulse that does not
change its shape upon propagation. It is called the fundamental soliton and
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Figure 2.1: Pulse spectra due to SPM induced broadening alone for a Gaus-
sian input pulse with the parameters TFWHM = 40 fs, peak power P0 = 16.4
kW, λ0 = 800 nm, and γ = 0.15 (Wm)−1. Left: Plotted on frequency scale.
Right: Plotted on wavelength scale [Eq. (A.26)].

can be found directly by assuming a shape-preserving solution of the form
A(z, T ) = V (T ) exp[iφ(z, T )] and inserting it in Eq. (2.13) [13]. The result
is

A(z, T ) =
√

P0sech
(

T

T0

)
exp

[
i
∣∣β̄2

∣∣
2T 2

0

z

]
(2.14)

with the condition N = 1, where [13]

N2 =
γP0T

2
0∣∣β̄2

∣∣ . (2.15)

N is the soliton order, P0 is the pulse peak power, T0 is a measure of
the pulse temporal width [see Eq. (A.8)], and sech is the hyperbolic-secant
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function. It is seen that the fundamental soliton given by Eq. (2.14) changes
neither its shape nor spectrum during propagation.

For integer values of N larger than 1 a higher-order soliton is formed
which does not preserve its shape during propagation. Instead, an input
pulse with initial shape A(0, T ) =

√
P0sech(T/T0) will change its shape

along the fibre, but periodically recover its original shape [13]. The higher-
order soliton solutions can be found analytically using the inverse scattering
method [41].

2.2.3 Four-wave mixing / Modulation instability

We now consider the propagation of a continuous-wave (CW) or quasi-CW

beam. For this purpose losses and the self-steepening term in Eq. (2.9) are
neglected:

∂A

∂z
= i

∑
m≥2

imβ̄m

m!
∂mA

∂Tm
+ iγ

[
A(z, T )

∫ ∞

−∞
R(T ′)

∣∣A(z, T − T ′)
∣∣2 dT ′

]
.

(2.16)

In comparison with the analysis in Ref. [13] the present analysis, which is
similar to the work of Shuang-Chun et al. [42], includes all higher-order
dispersion terms and the delayed Raman response. The inclusion of the
delayed Raman response will be useful for the study presented in Chapter
4. Consider a CW solution with angular frequency ω = ω0 and a small
perturbation a(z, T ) [13],

A(z, T ) = [
√

P0 + a(z, T )] exp(iγP0z). (2.17)

The exponential function provides the phase shift induced by SPM alone on
a CW beam. Inserting Eq. (2.17) in Eq. (2.16) and linearizing in a gives

∂a

∂z
=i

∑
m≥2

imβ̄m

m!
∂ma

∂Tm
+ iγP0 [1 − fR] [a + a∗]

+ i2γfR

[
P0 +

√
P0a

] ∫ ∞

−∞
hR(T ′)Re[a(z, T − T ′)]dT ′, (2.18)
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where ∗ denotes complex conjugate. Separating a into a real and an imagi-
nary part, a = u+iv [42], leads to a system of ordinary differential equations:

∂ũ

∂z
= −

∑
m=1

(iΩ)2m+1 β̄2m+1

(2m + 1)!
ũ −

∑
m=1

Ω2m β̄2m

(2m)!
ṽ (2.19)

∂ṽ

∂z
=

{∑
m=1

Ω2m β̄2m

(2m)!
+ 2γP0[1 − fR + fRh̃R]

}
ũ

+ i
∑
m=1

Ω2m+1 β̄2m+1

(2m + 1)!
ṽ, (2.20)

where the transformation into the Fourier domain (e.g. u → ũ) was done by
substituting ∂/∂T with −i[ω−ω0] = −iΩ. The system of linear differential
Eqs. (2.19-2.20) can in principle be solved by finding the eigenvalues of the
system matrix. A more direct approach is to assume a solution of the form

a(z, T ) = a1 exp{i(Kz − ΩT )} + a2 exp{−i(Kz − ΩT )} (2.21)

and insert this in both Eqs. (2.19-2.20) and their inverse Fourier transforms.
This leads to the dispersion relation [3]

K =
∞∑

m=1

β̄2m+1

(2m + 1)!
Ω2m+1

±
√√√√[ ∞∑

m=1

β̄2m

(2m)!
Ω2m + 2γP0(1 − fR + fRh̃R)

] ∞∑
m=1

β̄2m

(2m)!
Ω2m (2.22)

where h̃R is the Fourier transform of hR(t) appearing in Eq. (2.7), given by

h̃R(Ω) =
τ2
1 + τ2

2

τ2
2 − τ2

1 (i + τ2Ω)2
, (2.23)

shown in Fig. 2.2. We now consider the situation where the perturbation
frequency Ω is far away from the peak of the Raman gain at 13.2 THz:
Ω � ΩR = 2π × 13.2 THz. In this case, h̃R(Ω) ≈ 0, as can be seen from
Fig. 2.2, and the parametric gain g = Im(K) of the perturbation is

g(Ω) =

√√√√−
[ ∞∑

m=1

β̄2m

(2m)!
Ω2m + 2γP0(1 − fR)

] ∞∑
m=1

β̄2m

(2m)!
Ω2m , Ω � ΩR.

(2.24)
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Figure 2.2: The real (blue, solid) and imaginary (red, dashed) part of h̃R(Ω),
as given by Eq. (2.23). The peak of the imaginary part occurs at Ω = ΩR =
2π × 13.2 THz.

From this it is found that the maximum gain occurs for frequency shifts
Ω0 satisfying

∞∑
m=1

β̄2m

(2m)!
Ω2m

0 = −γP0(1 − fR) , Ω � ΩR. (2.25)

The gain can also be written as

g(Ω) =
√

[γP0(1 − fR)]2 − (κ/2)2 , Ω � ΩR, (2.26)

where κ is the phase mismatch given by

κ = 2γP0(1 − fR) + 2
∞∑

m=1

β̄2m

(2m)!
Ω2m , Ω � ΩR. (2.27)

The form of the perturbation given in Eq. (2.21) corresponds to a pe-
riodic modulation TMI = 2π/Ω of the intensity |A|2 of the initial CW field.
When the gain g(Ω) > 0 the CW field therefore gradually acquires a periodic
modulation known as modulation instability (MI). In the frequency domain
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this corresponds to the growth of two sidebands: one downshifted in fre-
quency from the CW carrier frequency, termed the Stokes wave, and one
upshifted from the CW carrier frequency, termed the anti-Stokes wave. The
angular frequencies of the Stokes and anti-Stokes waves are ωS = ω0 − Ω0,
and ωaS = ω0 + Ω0, respectively. Viewed in the frequency domain the pro-
cess is known as partially degenerate four-wave mixing (FWM) [13], but is
clearly a manifestation of the same effect as MI [43].

The influence of FWM on the Raman effect is well-known [44, 45], but
the above Eqs. (2.26-2.27) show the influence of the Raman effect on FWM.
To the best of the author’s knowledge, Frosz et al. were the first to directly
show that the (1− fR) factor appears when Ω � ΩR [3]. The consequences
of this factor are elaborated further in Section 4.3.

From Eq. (2.26) it is seen that there is gain for FWM if |κ| < 2γP0(1−fR).
This means that partially degenerate FWM will transfer energy from the
pump to all the wavelengths for which this condition is fulfilled.

Setting fR = 0 and neglecting all higher-order dispersion terms
transforms Eqs. (2.26–2.27) into the corresponding standard textbook
(e.g. Ref. [13]) expressions for MI and partially degenerate FWM. A detailed
investigation of the relation between FWM and higher-order dispersion has
been made by Biancalana et al. [40].

Finally, it should be pointed out that the MI/FWM phenomenon occurs
for an initially CW or quasi-CW field, as was assumed in the above analysis.
For short input pulses, efficient FWM not only requires phase matching
(κ ≈ 0), but also that the group velocities of the pump, Stokes, and anti-
Stokes waves are matched [13]. Recently, Yulin et al. found the generation
of new frequencies from FWM of a soliton and a CW field [46].

2.2.4 The Raman effect

The previous physical mechanisms relied on the nonlinear behavior of the
material through the Kerr effect, although the influence of the Raman effect
on FWM was included in the MI/FWM analysis. The Raman effect originates
from the scattering of a photon by molecular vibrations (phonons) in the
propagation medium [13]. This leads to the two spectral broadening mech-
anisms treated in the following.
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Raman gain

For a CW or quasi-CW pump the Raman effect transfers energy from the
pump to a Raman Stokes wave. The energy difference between the pump
photon and the Raman Stokes photon is transferred to a phonon [13]. In
silica, the shape of the gain spectrum can be approximated by Im[hR(Ω)]
shown in Fig. 2.2. Note the distinct gain peak at a frequency shift of
ΩR = 2π × 13.2 THz, which is typically clearly visible when Raman gain
is dominant (Chapter 5). The energy transfer from the pump to the Ra-
man Stokes wave requires both waves to be present simultaneously, but the
Raman Stokes wave can also buildup from spontaneous scattering [13].

Soliton self-frequency shift

A soliton with a temporal width shorter than ∼ 0.1 ps has a spectral width
wide enough that energy can be transferred from the high-frequency part of
the spectrum to the low-frequency part of the spectrum via the Raman effect
[47, 48]. This is called the soliton self-frequency shift (SSFS) and causes the
centre frequency ν0 of the soliton to red-shift during propagation. The rate
of red-shift dν0/dz can be expressed analytically in two limits. For a soliton
duration T0 much longer than 2π/ΩR ≈ 76 fs [13, 48, 49],

dν0

dz
= −8 |β2|TR

2π15T 4
0

, T0 � 76 fs, (2.28)

where TR ≈ 3 fs is related to the slope of the Raman gain spectrum [13].
For a soliton duration shorter than 76 fs the red-shift rate is given by

[49]
dν0

dz
= −0.09 |β2|Ω2

R

2πT0
, T0 � 76 fs. (2.29)

The red-shift rate dν0/dz has been plotted in Fig. 5.7, (p. 81), for the
two regimes where Eqs. (2.28–2.29) are valid. The figure is used there to
estimate the required soliton width T0 for a given red-shift.

2.2.5 Amplification of dispersive waves

Since the nonlinear effects require high power to be significant, a CW field
with low power can propagate with negligible influence from nonlinearities.
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Such a field can therefore be termed a linear or dispersive wave.
A soliton can transfer energy to a dispersive wave when (1) the soliton

and the dispersive wave have equal wavenumbers, and (2) a significant part
of the soliton spectral power is at the dispersive wave wavelength [50]. A
wavenumber matching expression can be derived as follows [1]. First, the
wavenumber (eigenvalue) ksol of a fundamental soliton with temporal width
Tsol and carrier frequency ωsol is estimated. We assume that the soliton
spectrum is narrow enough for ksol to only be slightly perturbed by higher-
order dispersion, and neglect this perturbation. One can then find the
soliton wavenumber from Eq. (2.14) to be ksol = |β2(ωsol)| /[2T 2

sol] [13].
Since the dispersive wave can be generated far from ωsol, we use the NLSE

with all the higher-order dispersion terms to estimate the wavenumber klin

of the dispersive wave. However, since the dispersive wave initially has
negligible power, the nonlinearity can be neglected by setting γ = 0:

∂A

∂z
= i

∑
m≥2

imβm(ωsol)
m!

∂mA

∂Tm
. (2.30)

By inserting the expression for a dispersive wave Alin =
√

Plin exp{i[klinz −
(ωDW − ωsol)t]} into Eq. (2.30), we obtain for ksol = klin [1]

|β2(ωsol)|
2T 2

sol

=
∑
m≥2

βm(ωsol)
m!

[ωDW − ωsol]m, (2.31)

where ωDW is the dispersive wave angular frequency. Since only second-
order dispersion is considered for the soliton wavenumber, this equation is,
strictly speaking, not valid when the soliton is in the immediate vicinity of
the zero-dispersion wavelength (ZDW). However, as will be shown in Section
3.2, the predictions given by this equation show good agreement with the
numerical simulations.

In the literature the following names are also used for dispersive waves:
linear waves, resonant radiation, and Cherenkov radiation/resonance. It
should also be noted that amplification of dispersive waves is a specific case
of the general phase matching conditions for FWM of a soliton and a linear
wave investigated by Yulin et al. [46, 51].
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Figure 2.3: Left: Sketch of triangular structure PCF with pitch Λ and air
hole diameter d. Right: Sketch of cobweb PCF with pitch Λ, core diameter
dcore, and wall thickness w. In both cases the grey areas indicate silica and
the white areas indicate air.

2.3 Photonic crystal fibres

As mentioned in the introduction of this chapter efficient nonlinear effects
require a high intensity of the optical beam. If the nonlinear medium is, e.g.,
a bulk crystal, the beam will generally undergo diffraction, thus limiting the
region where a high intensity can be obtained. This can be solved by using
an optical fibre as the nonlinear medium. An optical fibre confines the light
beam to the fibre core during propagation [52]. This allows a long nonlinear
interaction length, thus making nonlinear effects efficient.

Standard optical fibres are based on a silica core and cladding (see
Fig. 1.1, top), where a refractive index difference between them is made
by doping either the core, cladding, or both [52]. The refractive index dif-
ference then confines the light by total internal reflection.

A photonic crystal fibre (PCF) is a special type of optical fibre [17].
Instead of doping a material such as silica to obtain a refractive index
difference, PCFs can consist of undoped silica containing air holes, or, e.g.,
a silica core in air only supported by thin silica walls. Examples of such
structures are shown in Fig. 2.3 (see also Fig. 1.1, bottom).
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2.3.1 Advantages

The index difference between air and silica is much larger than can be
achieved through doping of silica [17]. PCFs can therefore provide stronger
confinement of light in the core, making it possible to achieve guidance in
cores as small as ∼ 2 µm diameter [53]. The PCFs can thus be designed
with a smaller effective area than in standard fibres, making them highly
nonlinear. For a recent review of the properties of nonlinear PCFs, see
Ref. [19]. It is also possible not to rely on the index difference for guidance,
but to confine light in the core by the photonic band gap effect [16].

As will be shown in the following chapters, it is to a large degree pos-
sible to engineer the dispersion of a PCF by proper design of the structural
parameters. It is, e.g., possible to design a PCF with two ZDWs in the
optical spectrum, where standard fibres have only one ZDW (at ∼ 1300
nm for a nonzero-dispersion-shifted fibre), unless the standard fibre is ta-
pered [54] (which is only possible over a limited fibre length) or is made
with multiple cladding layers [13]. Since the relative contribution of various
nonlinear mechanisms depends on the fibre dispersion profile, PCF disper-
sion engineering can be used to shape the spectrum of the output pulse
[1–9, 21, 55, 56].

2.3.2 Modelling of properties

Considering Eq. (2.2)/(2.9), it is seen that three properties of a PCF must
be known to calculate the pulse propagation: the loss α, the dispersion
coefficients β̄2, β̄3, . . ., and the nonlinear parameter γ(ω).

The loss can be measured and is often available in PCF datasheets
[57]. It was found by Frosz et al. that loss has negligible influence on the
supercontinuum (SC) spectrum for a 1.2 m long fibre with 300 dB/km at-
tenuation [3], so loss can usually be neglected.

The dispersion parameters can be found using the dispersion profile of
the PCF. The dispersion profile can be experimentally measured, but is
often measured over a small wavelength range compared to the width of
the SC spectrum [57]. As shown below, the dispersion needs to be known
over the entire wavelength range of interest. Calculations of the dispersion
profile have therefore been used throughout this work. Both fully-vectorial
plane-wave expansions [1, 2, 4–6, 8, 9] (based on the freely available MIT
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Photonic Bands package [58]) and a semivectorial finite-difference method
[3, 7] (described in Refs. [59, 60]) were employed in the dispersion calcula-
tions.

By fitting the calculated β2-dispersion profile [β2(ω) = −2πcD/ω2,
where D is the dispersion parameter [13]] to a polynomial of the form

β2(ω) = β̄2 + β̄3[ω − ω0] +
1
2
β̄4[ω − ω0]2 +

1
6
β̄5[ω − ω0]3 + . . .

≈ b2 + b3[ω − ω0] + . . . +
1

(M − 2)!
bM [ω − ω0]M−2 (2.32)

the parameters b2, . . . , bM can be extracted. This is because it is very
difficult to accurately calculate the higher-order derivatives necessary in
Eq. (2.5) from numerical data. Note that since each bm-coefficient is ob-
tained from a least-squares polynomial fit, they do not necessarily corre-
spond to the β̄m-coefficients as defined in Eq. (2.5). This distinction is
often neglected in the literature, where polynomial fits to dispersion curves
are widely used (see, e.g., Refs. [20, 61]). The β̄m coefficients in the propa-
gation Eq. (2.2)/(2.9) and Eq. (2.27) can, however, be replaced with the bm

coefficients if the number of fitting coefficients M is large enough, as shown
in the following.

The generalised NLSE [Eq. (2.2)] can be written in the Fourier domain
as [13]

∂Ã

∂z
=
[
D̂(ω) + N̂(z, ω)

]
Ã (2.33)

where D̂(ω) is the dispersion operator given by

D̂(ω) = i

∞∑
m=1

β̄m

m!
[ω − ω0]m, (2.34)

and N̂ is the nonlinear operator. [In Eqs. (2.2) and (2.9) the summation
runs from m = 2 because the m = 1 term vanishes when the pulse is
considered in a frame of reference moving with the group velocity of the
carrier frequency ω0]. For M sufficiently large, we then have

D̂(ω) = i
∞∑

m=1

β̄m

m!
[ω − ω0]m ≈ i

M∑
m=1

bm

m!
[ω − ω0]m, (2.35)
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which means that we can use the bm-coefficients in Eq. (2.2)/(2.9) instead of
the β̄m-coefficients. M is considered sufficiently large, when the polynomial
fit agrees reasonably with the calculated dispersion profile over the entire
wavelength range of interest.

Regarding the phase mismatch Eq. (2.27), note that the β̄m-coefficients
used in the analysis in Section 2.2.3 can be replaced by the bm-coefficients.
The resulting Eq. (2.27) can therefore also have the β̄m-coefficients replaced
by bm-coefficients.

To avoid confusion, I will in the following write β̄m, even though, strictly
speaking, I refer to the least-squares fitted bm-coefficients.

The nonlinear parameter γ(ω) can easily be calculated once the effective
area Aeff(ω) is known. The expression in Eq. (2.6) for the effective area was
derived for a standard fibre [13]. Lægsgaard et al. recently found a more
general definition of the effective area which is necessary when some of the
field energy is located in the air holes of a PCF [36]:

Aeff =
(

n1

ng,0

)2
[∫

E∗ ·DrdA
]2∫

SiO2
|E∗ ·Dr|2 dA

, (2.36)

where n1 is the linear refractive index of silica, ng,0 = c/vg(ω0) = cβ̄1 is
the effective group index of the guided mode, and Dr = εrE (εr = n2

1).
The integration in the numerator is taken over the xy plane, while the
integration in the denominator is only taken over the silica regions of the
transverse PCF structure.

If all of the field energy is located in the silica regions of the PCF and if
ng,0 ≈ n1, then Eq. (2.36) reduces to [36]

Aeff ≈
[∫ |E|2 dA

]2
∫ |E|4 dA

, (2.37)

which is equivalent to the standard definition Eq. (2.6). The general defini-
tion Eq. (2.36) is used in the present work. When including the frequency
dependence [1, 2, 4–6, 8, 9], Aeff(ω) was calculated from field distributions
found using the fully-vectorial plane-wave expansions [58]. When disregard-
ing the frequency dependence [3, 7], Aeff was approximated with the fibre
core area.
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2.4 The split-step Fourier method

The generalised NLSE [Eq. (2.2)/(2.9)] only has analytic solutions in some
cases where mechanisms such as self-steepening, Raman delayed response,
and higher-order dispersion can be neglected. An example of an analytic
solution is the soliton pulse, given in Eq. (2.14). Since the higher-order
nonlinear and dispersion terms are essential for understanding the spectral
broadening observed in many experiments, a numerical solution of the prop-
agation equation is required. Since the work of Hasegawa and Tappert in
1973 [62], the split-step Fourier method is by far the most widely used [13],
and also adopted in the present work. A different approach is to use a finite-
difference method, but these are typically more computationally intensive
[13] and will not be covered here.

2.4.1 Theory and implementation

As already shown in Eq. (2.33) the generalised NLSE [Eq. (2.2)/(2.9)] can
be written in the form

∂Ã

∂z
=
[
D̂(ω) + N̂(z, ω)

]
Ã, (2.38)

where the dispersion operator D̂(ω) is given by Eq. (2.34), disregarding the
loss α and m = 1 term, and the nonlinear operator N̂(z, ω) is given by

N̂(z, ω)Ã = iγ(ω)
[
1 +

ω − ω0

ω0

]
F
{

A(z, T )
∫ ∞

−∞
R(T ′)

∣∣A(z, T − T ′)
∣∣2 dT ′

}
.

(2.39)
Using the Fourier convolution theorem

∫
A(τ)B(t− τ)dτ ↔ Ã(ω)B̃(ω), the

nonlinear operator can be calculated using

N̂(z, ω)Ã = iγ(ω)
[
1 +

ω − ω0

ω0

]
F
{

A(z, T )F−1

{
R̃(ω)F

{
|A(z, T )|2

}}}
,

(2.40)
where F−1 denotes inverse Fourier transform, and R̃(ω) is the Fourier trans-
form of R(t), as given by Eqs. (2.7) and (2.23).

The principle of the split-step Fourier method consists of solving
Eq. (2.38) for steps h small enough that the dispersive (linear) step and
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the nonlinear step can be taken separately [13]. The dispersive step

∂ÃL

∂z
= D̂(ω)Ã (2.41)

has the exact solution

ÃL(z + h, ω) = exp
[
D̂(ω)h

]
Ã(z, ω), (2.42)

whereas the nonlinear step

∂ÃN

∂z
= N̂(z, ω)Ã (2.43)

must in general be solved by numerical integration:

ÃN(z + h, ω) =
∫ z+h

z
N̂(z′, ω)Ã(z′, ω)dz′. (2.44)

The simplest split-step scheme consists of first propagating the initial
pulse with Fourier transform Ã(z, ω) a small step h only influenced by the
nonlinear effects, followed by the same step size only influenced by dispersion
(or vice-versa):

Ã(z + h, ω) = exp
[
D̂(ω)h

] ∫ z+h

z
N̂(z′, ω)Ã

(
z′, ω

)
dz′. (2.45)

The pulse is repeatedly propagated in small steps h until it reaches the end
of the fibre. This scheme is accurate to second order in h, i.e. it is a first
order method.

It can be shown that the so-called symmetrized scheme [13, 63],

Ã(z + h, ω) = exp
[
D̂(ω)

h

2

] ∫ z+h

z
N̂
(
z′, ω

)
ÃL/2

(
z′, ω

)
dz′, (2.46)

where ÃL/2(z, ω) = exp
[
D̂(ω)h/2

]
Ã(z, ω) (thus taking first half a linear

step, then a full nonlinear step, and then the last half linear step), is a
second order method in h. This is the scheme used in the present work.
Note that the number of steps S needed is inversely proportional to the
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step size h: S ∝ 1/h. Therefore the global error is of one order lower
than the local error [64]. For the symmetrized scheme the global leading
error term is therefore of second order in h. The numerical integration of
N̂(z, ω)Ã is done using a fourth-order Runge-Kutta method, which requires
four evaluations of N̂ [65]. Since there are three Fourier transforms in each
evaluation of N̂ this brings the number of Fourier transforms for each step h
up to 13, including one to obtain A in the time domain after the dispersive
step in the Fourier domain.

The Fourier transform operation is performed using a fast Fourier
transform (FFT) algorithm [65]. This is the most computationally demand-
ing part of the split-step Fourier method. The primary tasks in decreasing
the propagation simulation time is therefore: reducing the number of FFTs
(Subsection 2.4.2) and/or using a fast implementation of the FFT algorithm
(Subsection 2.4.3).

Note that if self-steepening and the delayed Raman response can both
be neglected, the nonlinear operator becomes much simpler:

N̂(z, ω)Ã = iγ(ω)F
{
A(z, T ) |A(z, T )|2

}
. (2.47)

In this case each evaluation of N̂Ã requires only one FFT and one inverse
FFT to obtain A in the time domain. Furthermore, there is an analytical
solution to the nonlinear step in the time domain, shown in Eq. (2.12), so
the numerical integration [Eq. (2.44)] can be avoided. Thus two FFTs are
required for a step h, and the calculations become roughly 6.5 times faster
than the scheme involving a fourth-order Runge-Kutta numerical integra-
tion.

2.4.2 Adaptive step size method

A standard approach to the split-step Fourier method is to use a constant
step size h from fibre input to fibre output. The validity of the numerical
results is typically ensured by requiring that the relative change in photon
number [Eq. (2.10)] at the fibre output is small, say, less than 5%. In
the limit of vanishing nonlinearity, γ → 0, the step size h can be increased
because the error in splitting the dispersive and the nonlinear step decreases.
This is also the case when dispersion, self-steepening, and Raman effects
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are negligible, since then numerical integration of N̂ is unnecessary. On
the other hand, a small step size is required when both dispersion and
nonlinear effects are non-negligible. A pulse with high peak power will
therefore require a small step size to retain a small change in photon number.
But, the pulse can evolve during propagation so that, e.g., the peak power
decreases due to dispersion. An example of this is shown in Chapter 3.
It is also possible to start with a low power quasi-CW pulse, which then
forms high peak power solitons from MI. Examples of this are shown in
Chapter 5. In both cases, it would be more efficient to gradually adapt the
step size during propagation, thereby keeping the total number of FFTs to
a minimum.

In the work presented here an adaptive step size method was used for the
above reasons. The implementation was based on the algorithm outlined
by Sinkin et al. [64]. The choice of step size is based on an estimate of the
relative local step error. The true local error cannot be found because the
true solution is unknown. Therefore an estimate of the local error is made
by comparing a coarse solution and a fine solution. The coarse solution
Ãc(z + 2h, ω) is made by propagating the pulse Ã(z, ω) from z to z + 2h in
one step of length 2h; the fine solution Ãf(z+2h, ω) is made by propagating
Ã(z, ω) from z to z + 2h in two steps of length h. The local error estimate
is then [64]

δ =
‖Ãf − Ãc‖

‖Ãf‖
, (2.48)

where ‖Ã(z, ω)‖ = (
∫ |Ã(z, ω)|2dω)1/2. The algorithm calculates the error

estimate δ for each step. If δ is much larger than some predefined local goal
error, δG, the calculation is repeated with half the step size without taking
a step forward. If δ is only slightly larger than δG the step forward is taken,
but the next step size is made slightly smaller. When δ is much smaller
than δG the step forward is also taken, and the next step is made larger to
increase the total computation speed [64].

One disadvantage of this approach is that one calculates three propa-
gation steps (1 × 2h and 2 × h) to get to z + 2h, which might as well be
done by calculating only two propagation steps of size h. This means that
50% more FFTs are required. However, it can easily be shown that a linear
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combination of the coarse and the fine solution [64],

Ã4(z + 2h, ω) =
4
3
Ãf(z + 2h, ω) − 1

3
Ãc(z + 2h, ω), (2.49)

has a leading error term of fourth-order in h, which is one order higher than
the standard symmetrized scheme. Higher order does not always mean
higher accuracy [64, 65], so the cost of 1.5 times more Fourier transforms is
not necessarily compensated. But, as will be demonstrated in Chapter 3, it
is possible for the step size to increase by a factor of 100 from fibre input
to output, thus greatly decreasing the total number of FFTs required.

A suggestion for an improvement of the adaptive step size method is
given in Section 2.5.

2.4.3 Parallelization

The previous subsection dealt with making the split-step Fourier method ef-
ficient in terms of using a minimum number of FFTs. Another improvement
of the method is to decrease the computation time of each FFT.

The FFT algorithm used in this work is from Ref. [65], which is known
not to be the most efficient. The so-called fastest Fourier transform in the
West (FFTW) library should be up to ∼ 8 times faster [66, 67], but the
author was only recently made aware of this, so FFTW has not yet been
implemented in the split-step code. However, the most promising potential
of using the FFTW library is the possibility of parallelizing the computa-
tion task by splitting each FFT into C calculations, which can then be
distributed on C computer processors. Ideally, the FFT computation speed
would then be increased by a factor of C, but some computation time is
wasted on the splitting and in the communication between processors. To
test how much speed can be gained from parallelization in practice, the
FFTW utility fftw_mpi_test has been used on two different computer sys-
tems: mary.risoe.dk and bohr.gbar.dtu.dk. The mary cluster consists
of 240 individual PCs with 3.2 GHz CPUs [68]. The memory is distributed,
meaning that each PC has its own memory. The bohr server consists of 48
CPUs running at 1200 MHz and shared memory [69], meaning that each
CPU has fast access to the memory. The results of the parallelization test
are shown in table 2.1.
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Number of Parallel speedup Parallel speedup
processors C mary bohr

4 0.3–0.38 2.0–2.6
8 0.5–0.58 3.3–4.2
16 0.9–1.17 4.0–5.9
32 0.62–0.63 0.2–0.95

Table 2.1: Achieved speedups from parallelization for an FFT with 217 points.
A speedup of 1 means that the speed is the same as without parallelization,
and a speedup of 2 means that the parallel FFT is twice as fast.

It is seen that for both computer systems the optimal number of pro-
cessors is 16, because using more processors increases the communications
costs more than the increase in computational benefits. The communica-
tions costs for the distributed memory system on mary are also so severe
that there is no benefit in using the parallel FFT on this system. There is,
however, also no advantage in using the bohr system with shared memory
due to the difference in individual CPU speed: the uniprocessor time for
one FFT with 217 points on mary is ∼ 20 ms, while the time for one parallel
FFT on bohr using 16 CPUs is ∼ 20–26 ms. This test therefore indicates
that the split-step Fourier method would not be faster if a parallel FFT is
used, except if a computer system is available with both shared memory
and CPUs with clock frequency larger than 1200 MHz.

It should be mentioned that the test on the bohr server was made with
an FFTW version using the so-called message passing interface (MPI) com-
munications protocol, which is made for distributed memory systems, even
though bohr has shared memory. Later tests using an FFTW version using
OpenMP software, which is suited for shared memory systems, showed that
the time for one FFT with 217 points could be reduced to ∼ 16 ms [70].
Compared to mary the computation time for one FFT is thus reduced 20%.
It should be kept in mind, however, that the 20% time reduction comes
at a cost of using 16 CPUs for one simulation. In some cases (e.g. the in-
vestigations in Chapter 5), it is desired to run several simulations differing
only by the input pulse parameters. One could, e.g., use 16 of marys CPUs
to make 16 simultaneous simulations (using non-parallelized FFTs) in the
time t, while using 16 of bohrs CPUs to make 16 simulations in series (us-
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ing parallel FFTs), would take the time 16 × (1 − 0.2)t ≈ 13t. Whether
parallelization is an advantage therefore not only depends on the available
computer hardware, but also on whether only one or several simulations are
required.

2.5 Suggestions for improving the split-step
Fourier method

2.5.1 Improvement of the adaptive method

The adaptive step size method requires the selection of a local goal error, δG.
The algorithm then continuously modifies the step size to ensure that the
local error δ is close to the goal error: δ ≈ δG. A naive attempt to properly
choose δG could be a trial-and-error estimate for short propagation lengths,
until the rate of change in photon number, ∂P/∂z, seems appropriate. An
example would be to propagate over, say, 10 cm and find the δG that results
in a photon number change less than 0.005%. The naive guess would then
be that this is suitable if the change in photon number after 100 m of
propagation must be less that 5%. However, this would require that the
adaptive step size method ensures that the photon number changes linearly
along the fibre, i.e. ∂P/∂z = constant. As seen in Fig. 2.4 (solid plots), it
does not.

For the simulation parameters in Fig. 2.4 MI results in the formation of
solitons which red-shift along the fibre (this is studied in depth in Chapter
5). The formation of solitons with high peak power and their red-shift
requires a reduction in step size to lower the change in photon number
along the fibre. As shown in Fig. 2.4 (solid plots) the adaptive step size
method by Sinkin et al. [64] does reduce the step size, but not enough to
keep ∂P/∂z constant. Note that the increase in ∂P/∂z would be even larger
if a constant step size method was used.

A first attempt by the author to improve the adaptive method was to
let the step size selection depend on the local error relative to the step size,
δ/h, instead of depending only on δ. The algorithm would then use a goal
error parameter δGh to continuously adapt the step size so that δ/(h/L) ≈
δGh (the relative step size h/L is used to make δGh dimensionless). This
improved adaptive method was used by Frosz et al. in the work presented
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Figure 2.4: Relative change in photon number (blue) and relative step size
h/L (green), when using either the step size selection criteria δ ≈ δG = 10−6

(solid) or δ/(h/L) ≈ δGh = 1 (dashed). Parameters: L = 100 m, Λ = 1.72
µm, d/Λ = 0.65, quasi-CW input with λ0 = 1064 nm, P0 = 10 W, 2TsG = 30
ps and ΔνFWHM = 30 GHz (CW parameters are explained in Chapter 5). The
spectra obtained using the two methods are compared in Fig. 5.3.

in Chapter 5 [4]. The results are shown in Fig. 2.4 (dashed plots). δGh was
chosen so that the change in photon number for short propagation lengths
was similar to that with the basic adaptive method. The improved adaptive
method does indeed decrease the sudden rise in ∂P/∂z after z ≈ 70 m, which
the basic adaptive method suffers from.

However, the improved adaptive method still does not ensure that
∂P/∂z is constant along the fibre. This means that with each new sim-
ulation one cannot be sure that δGh is chosen sufficiently small that the
photon number does not change more than a desired limit. Choosing δGh

too small, on the other hand, would give a more accurate result, but could
take more computation time than is actually needed for the desired accu-
racy. An additional improvement, not yet implemented, could be to use
∂P/∂z as a step size selection criterion, instead of the local goal error δG.
It is only slightly more computationally demanding to calculate the photon



2.5 Suggestions for improving the split-step Fourier method 33

number P [Eq.(2.10)] than the local error estimate δ [Eq. (2.48)]. Further-
more, the local goal error calculation requires the calculation of both two
steps with step size h and one step with step size 2h; this is unnecessary if
∂P/∂z is used as a step size selection criterion.

2.5.2 Simplifying the nonlinear step

As mentioned in Subsection 2.4.1, a fourth-order Runge-Kutta has been
used to solve the nonlinear step. This numerical integration method requires
four evaluations of N̂ , each of which requires three FFTs, and is therefore
responsible for a large part of the computational effort. In the present
work it has not actually been verified that the fourth-order Runge-Kutta
is always required. It is possible that the step size h is often so small
that a second-order Runge-Kutta can be used, which requires only two
evaluations of N̂ [65]. Future work could include an investigation of when
this approximation is valid, and/or the implementation of an automatic
selection of the numerical integration method based on an estimate of the
integration error.
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Chapter 3

Femtosecond pumping

Femtosecond lasers can provide pulses shorter than 10 fs and a peak power
in the range of MWs (see, e.g., Ref. [71] for a recent review). The short
pulse duration in itself provides the pulses with a broad spectrum: an
ideal Gaussian shaped pulse of 10 fs duration [power full width at half-
maximum (FWHM)] and 800 nm centre wavelength has a FWHM power
spectral bandwidth of ∼ 90 nm [see Eq. (A.5)]. Coupling the pulses into
a photonic crystal fibre (PCF) can broaden the spectrum even further us-
ing supercontinuum generation (SCG) [72]. The high peak power facilitates
the study of nonlinear mechanisms in fibres as short as a few millimetres
[1, 73]. Apart from broadening the spectrum, SCG can be used to transfer
energy from the pump wavelength to wavelengths that are better suited for
a specific application. A recent demonstration of this was made by Aguirre
et al., who pumped at 1064 nm and used nonlinear broadening mechanisms
to obtain a spectrum with two peaks at 800 nm and 1300 nm, respectively
[74]. As mentioned in Chapter 1, the 800 nm wavelength region is optimal
for optical coherence tomography (OCT) measurements of the eye, while the
1300 nm region is considered optimal for measurements of highly scattering
tissue such as skin.

The first 4 sections of this chapter consider femtosecond pumping of
PCFs with two zero-dispersion wavelengths (ZDWs). It is well known that
the gain bandwidth for four-wave mixing (FWM) is widest in the vicinity of
the ZDW due to phase matching conditions [13, 20], and that solitons in the
vicinity of the ZDW can amplify dispersive waves in the normal dispersion
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region (NDR) [50, 51, 56]. Therefore, PCFs with two (or more) ZDWs could
prove advantageous for efficient supercontinuum generation and spectral
shaping.

This chapter first presents an investigation of the physical broadening
mechanisms in the first few millimetres of the fibre (Section 3.1). Section 3.2
then investigates how the supercontinuum (SC) spectrum can be controlled
by shifting the higher ZDW. Section 3.3 presents the first finding of a pulse
structure that could be termed a bright-bright soliton pair. Finally, spectral
control by tapering the fibre is investigated in Section 3.4.

3.1 Self-phase modulation with or without four-

wave mixing

Supercontinuum generation in PCFs with two closely lying ZDWs was first
presented by Hilligsøe et al. [73]. They used 40 fs pulses and obtained a
double peaked spectrum at ∼ 600 and 1200 nm. The resulting spectrum
was explained as a result of self-phase modulation (SPM) and FWM. This
explanation was then adopted by Tse et al. who used 380 fs pulses [75].
Both Refs. [73] and [75] present phase matching curves (graphical solutions
to the phase match condition κ = 0 showing the location of the Stokes and
anti-Stokes wavelengths as a function of pump wavelength) to support their
claim that FWM plays a role in the spectral broadening. Hilligsøe et al. use
the phase matching condition [13, 73]

κ = β(ωS) + β(ωaS) − 2β(ω0) + ΔkNL (3.1)

where ΔkNL = 2γP0(1− fR) is the nonlinear phase contribution. By use of
Eq. (2.4) this condition can easily be shown to be equivalent to Eq. (2.27).
Tse et al. do not specify their phase matching condition, but refer to Ref. [76]
regarding FWM, where Eq. (3.1) was also used.

The use of Eq. (3.1) and the corresponding phase matching curves is
validly used in Ref. [76] because it concerns continuous-wave (CW) pumping.
As mentioned in Subsection 2.2.3, the analysis leading to Eq. (3.1) assumes
that the pump is either CW or quasi-CW (see Subsection 2.2.3 or Ref. [13]).
It is therefore, strictly speaking, invalid to use Eq. (3.1) when considering
pulses of 40 or 380 fs duration. As also mentioned in Subsection 2.2.3,



3.1 Self-phase modulation with or without four-wave mixing 37

efficient FWM for pulses that cannot be considered CW or quasi-CW requires
not only phase matching but also group velocity matching [13]. The phase
matching curves presented in Refs. [73, 75] can therefore not be used to
support the claim that FWM plays a role in the spectral broadening.

It could be claimed that group velocity mismatch can be neglected over
short fibre lengths, but this does not necessarily make the use of Eq. (3.1)
valid, and FWM is not required to explain the observed spectral formation.
First, the spectra presented in Fig. 2.1 were calculated for parameters sim-
ilar to those used by Hilligsøe et al. in Ref. [73]. Even though only SPM is
included in the calculations leading to Fig. 2.1, the spectrum for 10 mm of
propagation shows that most of the spectral energy is located at ∼ 600 and
1200 nm, as was measured experimentally by Hilligsøe et al. in Ref. [73].
Second, it was shown by Frosz et al. that even though changing the dis-
persion parameters can significantly shift the FWM Stokes and anti-Stokes
wavelengths, the peaks in the corresponding calculated spectra shift very
little [1]. It is shown in Fig. 3.1 (right) that the wavelengths with minimum
absolute phase mismatch |κ| are at ∼ 700 and 950 nm when all higher-order
dispersion terms are included. Neglecting the higher-order dispersion terms
shifts these wavelengths to ∼ 510 and 1900 nm, respectively. One would
therefore expect that spectral peaks arising from FWM would make a sim-
ilar shift in corresponding simulations. As seen in Fig. 3.1 (left), this is
not the case. The double peaks at ∼ 600 and 1000 nm for the full simula-
tion only move slightly away from the pump when higher-order dispersion
is neglected. Considering again Fig. 2.1, it is seen that SPM is sufficient to
explain the transfer of spectral power to ∼ 700 and 900 nm for a slightly
shorter fibre (z = 5 mm). It must therefore be concluded that FWM does
not play a significant role for the case of femtosecond pumping in millimetre
length fibres, considered in this section.

Finally, it should be mentioned that the influence of FWM was tested
in Ref. [73] by shifting the dispersion of the fibre to normal dispersion
for all wavelengths, β2(ω) → β2(ω) + β′, thus removing the possibility of
phase matched FWM. A significantly weaker spectral broadening was then
observed, and from this it was concluded that FWM plays an important role.
However, in the normal dispersion regime SPM and group-velocity dispersion
(GVD) will act together to broaden the pulse temporally significantly faster
than in the anomalous dispersion regime [13]. Shifting the dispersion to
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Figure 3.1: Left: Simulated power spectra after 6 mm of propagation, us-
ing all higher-order dispersion (up to β̄15) and nonlinear effects (blue, solid);
higher-order dispersion included but no delayed Raman response, fR = 0
(green, dotted); Raman effect included but only including dispersion terms
β̄2 and β̄3 (red, dashed). Right: Phase mismatch κ when including disper-
sion terms up to β̄14 (blue, solid) and when only β̄2 is included (red, dashed).
(Note that the uneven dispersion coefficients β̄3, β̄5, . . . , β̄15 do not contribute
to the phase mismatch.) The horizontal solid black line indicates phase match
(κ = 0) and the horizontal dashed lines indicate the region for FWM gain
[|κ| < 2γP0(1 − fR)]. Parameters: Λ = 1.0 µm, d/Λ = 0.57 fibre (dispersion
profile shown in Fig. 3.2, left), P0 = 15 kW, γ(λ = 804 nm) = 0.148 (Wm)−1,
and TFWHM = 13 fs [1].

normal dispersion for all wavelengths will therefore weaken the SPM induced
spectral broadening, and this could explain the observations made in [73].

3.2 The role of the higher zero-dispersion wave-
length

This section considers propagation in longer fibres than in the previous
section.

As shown in Fig. 3.2 (left) it has been found that by modifying the pitch
Λ and hole size d of the triangular hole structure the lower ZDW remains
constant at ∼780 nm, while the higher ZDW varies between 950 nm and
1650 nm [1, 8, 9]. This allows an investigation of the role of the higher
ZDW, which is the subject of this section. The dispersion profiles of the
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Figure 3.2: Left: Calculated dispersion profiles for 5 triangular PCFs with
pitch Λ and relative air-hole size d/Λ given in the inset. Right: Wavelength
λDW of dispersive waves vs. the soliton centre wavelength λS; the soliton
temporal width is given by Eq. (3.3). The colour labelling is the same in both
figures.

fibre with Λ = 1.0 µm and the fibre with Λ = 1.4 µm are similar to the
dispersion profile of the fibre examined by Hilligsøe et al. [73] and Genty
et al. [56], respectively. Aeff(λ = 804 nm) is 1.38 µm2 for the fibre with
Λ = 1.0 µm and increases with the pitch Λ. For the Λ = 1.4 µm fibre,
Aeff (λ = 804 nm) is 1.97 µm2.

Input parameters

To focus on the influence of the higher ZDW, the same input pulse pa-
rameters have been used for all the simulations in this section: the pump
wavelength is λ0 = 804 nm, the pulse is Gaussian shaped with a power
FWHM of TFWHM = 13 fs, and the peak power is P0 = 15 kW. When calcu-
lating the power spectral density S(λ), a repetition rate frep of 80 MHz is
assumed; the power spectral densities presented here are normalized so that∫

S(λ)dλ = Pav [see Eq. (A.26)], where Pav is the average pulse power of the
input pulse [Eq. (A.6)]. These parameters are realizable with commercially
available femtosecond lasers. Hilligsøe et al. [73] used a fibre length up to
5 cm. Genty et al. [56] used a fibre length up to 1.5 m, but found that
the continuum generation was complete after 50 cm of propagation. In this
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work a propagation length up to 60 cm, 52 cm, and 60 cm, was simulated
for the fibres with Λ ≤ 1.2 µm, Λ = 1.3 µm, and Λ = 1.4 µm, respectively
[1].

215 points were used in the simulations, unless otherwise stated, with a
temporal resolution Δt = 1.4 fs. The local goal error used in the adaptive
step-size method was set to δG = 10−8 for the fibres with a pitch Λ ≤ 1.2
µm, and δG = 10−9 for the fibres with a pitch Λ ≥ 1.3 µm. These local
goal errors were found by trial-and-error to give a sufficiently low change
of photon number along the fibre length for the total change in photon
number to be acceptable (Subsection 2.5.1). For the Λ = 1.0 µm PCF,
this resulted in a step size of ∼ 50 nm in the beginning of the fibre which
increased gradually along the fibre until it was ∼6 µm at the end of the
fibre. As is shown in the following, much of the power launched into the
Λ = 1.0 µm PCF is rapidly moved to the normal dispersion region, such
that only a small amount of power is left for solitons in the anomalous
dispersion regime. This causes the pulse to spread temporally, resulting
in a lower peak power and lower nonlinearities, which allows the adaptive
step-size algorithm to automatically increase the step size, and thereby also
the computation speed. On the other hand, in the Λ = 1.2 µm PCF the
soliton retains a large peak power and the step size is initially ∼60 nm
in the beginning of the fibre and increases to only ∼0.6 µm at the end
of the fibre. The relative change in photon number was less than 0.2%
for all simulations in this section. To better visualize the pulse dynamics,
the pulse will often be considered simultaneously in the time and spectral
domain using spectrograms calculated as [73, 77]

S(z, t, ω) =
∣∣∣∣
∫ ∞

−∞
e−i[ω−ω0]t′e−[t′−t]2/α2

spA(z, t′)dt′
∣∣∣∣
2

. (3.2)

The spectrogram displays the relative temporal positions of the frequency
components of the pulse, and is similar to a cross-correlation frequency-
resolved optical gating (X-FROG) measurement [78]. The spectrograms use
a window size αsp = 16 fs and are normalized to S(0, 0, ω0), unless otherwise
noted.
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Physical mechanisms

When the pump peak power P0 and width T0 are sufficiently high for a
higher-order soliton to form [Eq. (2.15)], perturbations to the unperturbed
nonlinear Schrödinger equation (NLSE) [Eq. (2.13)] can cause the soliton
to breakup into N fundamental solitons with different peak powers and
temporal widths [13]. The shortest fundamental soliton has the highest
peak power, and its width is given by [79, 80]

Tsol =
T0

2N − 1
=

T0

2
√

(γP0T
2
0 / |β2(ωsol)|) − 1

. (3.3)

The fundamental solitons can amplify dispersive waves, as described in Sub-
section 2.2.5, and undergo a red-shift, as described in Subsection 2.2.4. The
amplification of dispersive waves is investigated by inserting Eq. (3.3) into
Eq. (2.31) which is then solved for each fibre dispersion profile. It is assumed
that the fundamental soliton temporal width Tsol is unchanged as the soli-
ton is down-shifted in frequency due to soliton self-frequency shift (SSFS);
Tsol given by Eq. (3.3) is therefore calculated using the pump peak power
P0, the input pulse temporal width T0, and the second-order dispersion β̄2

[β2(ωsol) = β̄2 at ωsol = ω0]. The result is shown in Fig. 3.2 (right), which
shows the wavelengths λDW at which dispersive waves can be amplified, as
a function of the soliton wavelength λs. From this figure it is expected that
a soliton initially launched at λ0 = 804 nm will amplify dispersive waves at
∼ 600 nm in all the 5 fibres investigated in this section. Dispersive waves in
the infrared are not expected to be amplified in the beginning of the fibre,
because there is initially not enough spectral power from the soliton in the
infrared [56].

Equation (3.3) gives the width of the shortest fundamental soliton, which
was then used for Fig. 3.2 (right). It was calculated that the temporally
longer fundamental solitons are phase-matched to amplify dispersive waves
slightly closer to the soliton wavelength than the shortest soliton [1]. More
importantly, the frequency shift per unit propagation length caused by SSFS

is smaller, because it scales inversely with Tsol or T 4
sol, depending on the mag-

nitude of Tsol [Eqs. (2.28) and (2.29)]. This makes the shortest fundamental
soliton move quicker towards the higher ZDW and be the first to amplify dis-
persive waves. It is therefore more important for the generation of infrared
dispersive waves than the longer solitons.
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Figure 3.3: Calculated spectrograms up to z = 6 mm in the Λ = 1.0 µm
(left) and the Λ = 1.1 µm (right) fibre. The white horizontal line indicates the
ZDWs. 210 computation points were used. Both animations can be downloaded
online from Ref. [1].

Due to small differences in Aeff(ω0) and β̄2, N varies from 3.8 to 3.3 for
the Λ = 1.1 − 1.4 µm fibres. Compared to these fibres, β̄2 for the Λ = 1.0
µm fibre is ∼ 4 times smaller numerically, giving N = 8.2.

In the Λ = 1.0 µm fibre, the anomalous dispersion region (ADR) is so
narrow that the SPM rapidly moves most of the pulse energy into the NDR

(Fig. 3.3, left) [1]. In the Λ = 1.1 µm fibre, the red-shifted peak remains in
the ADR and can thus form a soliton. It is seen from Fig. 3.3 (right) that
the soliton starts to amplify dispersive waves at 1600 nm at z ∼ 3 mm. The
dispersive wave wavelength of ∼1600 nm is correctly predicted from Fig. 3.2
(right). Note that the dispersive waves immediately spread temporally, as
expected.

The power spectra after 6 mm and 6 cm of propagation in each of the
5 examined fibres are compared in Fig. 3.4. The dispersive wave generated
at ∼1600 nm in the Λ = 1.1 µm fibre has too low power to be seen on the
linear scale used in the figure. The comparison shows that in all of the 5
fibres there are two distinct peaks, a red-shifted and a blue-shifted, which
arise from SPM, as described in Section 3.1. Except for the Λ = 1.0 µm
fibre, in all cases the red-shifted peak is still in the ADR after 6 mm and is
able to form solitons.
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Figure 3.4: Power spectra after 6 mm (left) and 6 cm (right) of propagation.
The input spectrum is indicated as a thin black line.

Figure 3.5: Left: Spectrogram for the 1.2 µm PCF up to z = 60 cm. Right:
Spectrogram for the 1.3 µm PCF up to z = 52 cm. The white horizontal lines
indicate the ZDWs. Both animations can be downloaded online from Ref. [1].
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The solitons are gradually red-shifted by SSFS towards the higher ZDW.
When a soliton has red-shifted to the vicinity of the higher ZDW it starts
to amplify dispersive waves in the NDR [56]. As mentioned above, this oc-
curs already after approximately 3 mm of propagation in the Λ = 1.1 µm
fibre. For fibres with a larger pitch Λ, the soliton can propagate several
centimeters before amplifying dispersive waves in the infrared. This hap-
pens at approximately z = 35 cm for the Λ = 1.2 µm fibre (Fig. 3.5, left).
The spectral ripples in the dispersive waves at ∼600 nm can be explained
by cross-phase modulation (XPM) between the soliton and the dispersive
waves [81].

For the Λ = 1.3 µm fibre, the soliton has shifted to ∼1200 nm at z = 52
cm. Since this is still far from the higher ZDW, the soliton has not yet lost
power to dispersive waves in the infrared (Fig. 3.5, right). Similarly, in the
Λ = 1.4 µm fibre the soliton has shifted to ∼1170 nm at z = 60 cm without
losing power to infrared dispersive waves. The main role of the higher ZDW

for the cases investigated here can therefore be summarized as follows. For
a fibre with closely lying ZDWs, pumping in the ADR causes SPM to move
most of the power out of the ADR, and further broadening into the infrared
is halted. For fibres with a larger separation between the ZDWs a soliton is
formed, which gradually red-shifts along the fibre due to SSFS. The larger
the higher ZDW is, the further into the infrared the soliton can red-shift
without losing power to dispersive waves above the higher ZDW.

3.2.1 Wavelength-tunable soliton

An application of these fibres could, e.g., be the generation of femtosec-
ond pulses in the infrared from an initial pulse at λ = 804 nm. It is
further demonstrated in Fig. 3.6 that the SSFS can be used to produce
femtosecond pulses with an almost Gaussian spectral shape. By choosing
a suitable fibre length, the central wavelength of the Gaussian spectrum
can be freely selected in the range ∼1020–1200 nm. The FWHM of each
Gaussian spectrum is on the order of 30 nm. The use of the SSFS to gen-
erate wavelength-tunable soliton pulses has previously been demonstrated
in tapered PCFs [82]. For comparison, in Ref. [82] a SSFS of 20% of the
optical frequency (λ = 1.3 → 1.65 µm) was experimentally demonstrated
in a 15 cm long tapered fibre, where the present results correspond to a
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Figure 3.6: The red-infrared part of the pulse spectrum output from the
Λ = 1.3 µm PCF at various fibre lengths.

SSFS of more than 30% in 52 cm of untapered fibre. SSFS in an untapered
PCF has also been demonstrated experimentally by Reid et al. [83]. Quite
similar to the simulated results in this work, Reid et al. pumped at 810
nm and obtained a maximum red-shift to 1260 nm. The wavelength tun-
ability of the soliton was exploited recently by Andresen et al. for coherent
anti-Raman Stokes (CARS) microspectroscopy [84]. In such experimental
setups it is unpractical to tune the soliton wavelength by changing the fibre
length. Instead, one can vary the fibre input power. Since the input peak
power P0 determines the width Tsol of the fundamental solitons [Eq. 3.3],
and the red-shift rate depends inversely on Tsol or T 4

sol (Subsection 2.2.4),
the obtained red-shift can be tuned by varying P0 for a fixed fibre length.

It is expected that for longer fibre lengths the solitons in the Λ = 1.3–
1.4 µm PCFs will also continue to red-shift until they are in the vicinity
of the higher ZDW, followed by an amplification of dispersive waves in the
infrared. It should be noted, however, that fibre losses in the infrared region
(OH-absorption and confinement loss) may ultimately limit the spectral
extension into the infrared [56, 73].
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Figure 3.7: Left: A close-up of the spectrogram for the Λ = 1.2 µm PCF at
z = 60 cm. It is seen that the pulse generated in the NDR has not changed
its width significantly over several centimeters of propagation. The white
horizontal lines indicate the ZDWs. Right: Wavelength λB at which there is
group-velocity match to λA, according to Eq. (3.5). The black line indicates
λA = λB.

3.3 Bright-bright soliton pair

It is noteworthy from Fig. 3.5 (left) that the pulse generated in the infrared
NDR of the Λ = 1.2 µm fibre, does not immediately disperse (as was the case
for the Λ = 1.1 µm fibre, see Fig. 3.3, right) but has retained its temporal
width after several centimeters of propagation, as seen in Fig. 3.7 (left).
The pulse is generated at ∼ 1600 nm where β2 = 2 × 10−25 s2/m, and has
an estimated temporal width (FWHM) of less than 50 fs. The dispersion
length is thus [13] LD = T 2

0 / |β2| ≈ 1 cm. Since the temporal width of the
radiation in the NDR is almost constant during 20 cm of propagation, it is
clear that some nonlinear effects counter-act the dispersion. This is similar
to the effect of SPM in the ADR, which allows solitons to exist (Subsection
2.2.2).

It was suggested by Frosz et al. that the pulse generated in the NDR forms
a soliton-pair with the soliton in the ADR [1]. Soliton-pairs across the ZDW

are known in the form of bright-dark and bright-gray soliton pairs made
possible by XPM between the solitons [13]. However, in the case at hand a
bright-bright soliton pair across the ZDW is apparently formed, which was
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not described before the work of Frosz et al. [1], to the best of the author’s
knowledge. The co-propagation of a sech-pulse in the NDR with a sech-pulse
in the ADR was investigated in Ref. [85], but only the propagation of the
pulse in the ADR was considered, and the influence of the ADR-pulse on the
NDR-pulse was neglected. A bright-bright soliton pair can be formed within
the same dispersion region [86], but XPM alone cannot allow a bright-bright
soliton pair across the ZDW. It is therefore expected that the Raman effect
also plays a role in this new observation.

It is known that a region of modulation instability (MI) can exist near
the ZDW in the NDR, and that this MI can possibly allow bright solitons to
form in the NDR [87]. One requirement for the MI region to exist at the
angular frequency ω is β2(ω) + β4(ω)Ω2/12 < 0 [88], where Ω is defined
as in Eq.(2.27). Near the higher ZDW of the Λ = 1.2 µm fibre we have
β4(ω) > 0, so there does not exist an MI region in the NDR (β2 > 0), and
this can therefore not explain the apparent soliton formation in the NDR.

Since one part of the soliton pair is formed in the NDR with higher wave-
length than the ADR, the red-shift of the soliton in the ADR is halted due
to spectral recoil from the higher ZDW [89, 90]. The “soliton” in the NDR

therefore does not have to continuously shift its wavelength to match the
group-velocity of the soliton in the ADR; if the NDR-pulse had a lower wave-
length than the ADR-pulse the two pulses would separate spectrally, due to
SSFS of the ADR-pulse and spectral recoil from the lower ZDW. Instead, the
result is a spectrally stable soliton pair. The condition of group-velocity
matching for the soliton-pair is examined analytically in the following sub-
section.

3.3.1 Group-velocity matching

In this subsection an equation describing the condition for group-velocity
matching is derived. This is a necessary condition if radiation initially
formed from amplification of dispersive waves in the NDR, leads to the
formation of a soliton-pair consisting of a soliton in the ADR (at λ = λA)
co-propagating with a “soliton” in the NDR (at λ = λB).

A necessary condition for the two pulses to be co-propagating is that
the group-velocity vg is matched, i.e. 1/vg = β1(ωA) = β1(ωB). From the
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definition of β(ω) [Eq. (2.4)] one has,

β1(ω) = β1(ωA) + β2(ωA)[ω − ωA] +
β3(ωA)

2
[ω − ωA]2, (3.4)

where βm(ω) is given by Eq. (2.5) and we only include up to β3(ωA). The
condition β1(ωA) = β1(ωB) then gives

Δω = −2β2(ωA)
β3(ωA)

, (3.5)

where Δω = ωB − ωA. From Eq. (3.5) λB is plotted as a function of λA for
the dispersion profiles belonging to the fibres with Λ = 1.1 µm and Λ = 1.2
µm in Fig. 3.7 (right). From Figs. 3.3 (right) and 3.4 (right), we know
that the SSFS is cancelled for the soliton in the Λ = 1.1 µm fibre when the
soliton wavelength reaches ∼ 1000 nm. It is seen in Fig. 3.7 (right), that
for λA = 1000 nm there is no group-velocity match in the vicinity of λA.
Since the amplification of dispersive waves transfers energy to ∼ 1600 nm, a
soliton-pair cannot be formed. On the other hand, for the Λ = 1.2 µm fibre,
it is known from Figs. 3.5 (left) and 3.7 (left) that the soliton is red-shifted
to ∼ 1250 nm before cancellation of SSFS. According to Fig. 3.7 (right)
at λA = 1250 nm there is group-velocity match to λB ∼ 1500 nm. The
ADR-pulse can therefore match its group-velocity to the NDR-pulse formed
by the transfer of energy to ∼ 1600 nm. As observed in Figs. 3.5 (left) and
3.7 (left), this leads to the formation of what appears to be a bright-bright
soliton pair across the higher ZDW.

The structure of the apparent soliton-pair is shown in greater detail in
Fig. 3.8 using spectrograms with logarithmic and linear scales. Recently,
work has been initiated to analytically investigate and understand the ap-
parent soliton-pair [91].

3.4 Tapered photonic crystal fibres

As mentioned in Subsection 2.3.1 an advantage of using PCFs for supercon-
tinuum generation is the small core size that can be obtained, thus resulting
in a high nonlinear parameter. A small core size can also be obtained in
standard fibres, if the fibre is tapered by heating and stretching it. The stan-
dard fibre can then be used for SCG by pumping with femtosecond pulses
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Figure 3.8: Spectrograms on a logarithmic (left) and linear (right) scale at
z = 60 cm for the Λ = 1.2 µm fibre. As seen from the colour bar, the colour
scale for the linear scale spectrogram is not normalized to S(0, 0, ω0) = 1, as
the other spectrograms, because this does not result in a spectrogram with
notable details. The white horizontal lines indicate the ZDWs.

[54]. Tapering is mostly relevant for femtosecond pumping because fibres
can typically be tapered up to a length of only ∼ 10–15 cm [92] and, as will
be seen in the following chapters, pumping with picosecond or longer pulses
requires longer fibre lengths for efficient spectral broadening.

A PCF can be tapered to achieve an even smaller core than in an unta-
pered PCF, thereby reducing the required fibre length for efficient nonlinear
effects [82]. The tapering procedure can also be used to engineer the disper-
sion properties of a PCF so that the phase-matching conditions are modified
to, e.g., generate dispersive waves in the blue part of the spectrum [93].
A recent review of tapered PCF fabrication, characterization, applications,
and properties can be found in Ref. [94].

Falk et al. were the first to investigate the possibilities for shaping the
SC spectrum by varying the tapering parameters of a tapered triangular
structured PCF over a wide parameter space [2, 5]. This work is described
in the following.

3.4.1 Modelling of tapered fibres

The fibre with parameters Λ = 1.0 µm and d/Λ = 0.57 investigated in
Sections 3.1–3.2 is also the basis of the study in this section. It is assumed
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Figure 3.9: Left: A sketch of the tapered PCF along the fibre length z. r0

is the radius of the untapered PCF and rT is the radius of the PCF at the
taper waist. zT is the distance from the start of the tapering to the waist.
Middle: Dispersion profiles for PCFs with pitch Λ varying from 1.0 µm to 0.9
µm and constant relative hole size d/Λ = 0.57. Right: Dispersion coefficients
β2, . . . , β5 for the 10 dispersion profiles in the middle figure, plotted with
fitted second-order polynomials as a function of Λ. β2 [10−27 s2/m] (red, ◦),
β3 [10−41 s3/m] (green, �), β4 [10−55 s4/m] (black, ), and β5 [10−70 s5/m]
(blue, �).

that the relative hole size d/Λ is constant along the tapering [2]. This
assumption seems reasonable if the PCF is tapered “fast-and-cold” [94, 95].
It is also assumed that the variation of the pitch Λ(z) along the taper is
described by [2]

Λ(z) = ΛT

[
1 +

Λ2
0 − Λ2

T

Λ2
T

(z − zT)2

z2
T

]1/2

, z ≥ 0, (3.6)

where the border between untapered fibre and tapering region is at z = 0,
Λ0 = Λ(0) is the pitch of the untapered fibre, ΛT = Λ(zT) is the pitch
at the tapering waist, and zT is the length from the start of the tapering
to the tapering waist. The diameter of the tapered PCF is proportional to
Λ(z); the tapering shape resulting from Eq. (3.6) is shown in Fig. 3.9 (left).
This taper shape should be realizable, since the shape of the tapering can
be controlled during the tapering [96].

The propagation in the tapering is modelled using Eq. (2.2), where the
β̄m-coefficients now have a z-dependence: β̄m(z). In the split-step code, this
is implemented by dividing the tapering region 0 ≤ z ≤ zT into 100 sub-
regions, z1, z2, . . . , z100. Every time the pulse moves into a new sub-region
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Figure 3.10: The effective area Aeff as a function of wavelength for a pitch
size Λ ranging from 1.0 to 0.9 µm. The relative hole size d/Λ = 0.57 for all
fibres.

zs, the β̄m coefficients are updated to β̄m(zs). In Ref. [2] the minimum
tapered pitch ΛT was 0.9 µm, corresponding to a 10% tapering. Instead
of calculating dispersion profiles for all the 100 subregions, 11 dispersion
profiles were calculated for Λ = 1.0 µm, 0.99 µm, 0.98 µm, . . . , 0.9 µm,
shown in Fig. 3.9 (middle). The dispersion coefficients β̄2–15 were then
extracted from a polynomial fit for each of the 11 dispersion profiles. It was
found that the variation of the dispersion coefficients with the pitch Λ could
be well-approximated by a second-order polynomial, as shown in Fig. 3.9
(right). Thus, second-order polynomials for β̄2(Λ), β̄3(Λ), . . . , β̄15(Λ) were
obtained and could be used to calculate the β̄m-coefficients in each of the
100 subregions.

Aeff(λ) is shown for three different values of Λ in Fig. 3.10. At λ = 800
nm, Aeff ≈ 1.37 µm2 for the Λ = 1.0 µm fibre, and Aeff ≈ 1.03 µm2 when
tapered to Λ = 0.9 µm. The variation of Aeff(λ) along the tapering is thus
less than 25% and was neglected in Ref. [2], but can be included [97].

3.4.2 Spectral shaping by tapering

The present work has focused on pumping the tapered fibre directly at
the border between untapered and tapered fibre, corresponding to z = 0
in Eq. (3.6). As mentioned in the previous subsection, the untapered fibre
parameters correspond to one of the fibres investigated in both Sections 3.1–
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Figure 3.11: (a, i) Power spectra for an untapered PCF (Λ = 1.0 µm) at
z = 0 mm (dotted, red), z = 8 mm (dashed, green), and z = 15 mm (solid,
blue). (b, i) Power spectra at z = zT = 15 mm for ΛT = 0.9 µm (dotted, red),
ΛT = 0.95 µm (dashed, green), and ΛT = 1.0 µm (solid, blue). (c, i) Power
spectra for ΛT = 0.9 µm at taper waist z = zT, for zT = 15 mm (dotted, red),
zT = 25 mm (dashed, green), and zT = 50 mm (solid, blue). (d, i) Power
spectra at taper waist z = zT, ΛT = 0.9 µm, and average power Pav = 6 µW
(dotted, red), 6 mW (dashed, green), and 12 mW (solid, blue). (a-d, ii) Centre
wavelengths λ, (a-d, iii) power spectral FWHM, and (a-d, iv) average power
within the FWHM of the red-shifted (◦) and blue-shifted (�) peaks, versus the
parameters z (i), ΛT (ii), zT (iii), and Pav (iv). Pump parameters: λ0 = 808
nm, TFWHM = 15 fs, frep = 75 MHz, and P0 = 5 kW [except for Subfig. (d)
where the power is varied]. d/Λ = 0.57 along all taperings.
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3.2. The input pulses used are also very similar: Gaussian shape, λ0 = 808
nm, TFWHM = 15 fs, frep = 75 MHz, and P0 = 5 kW. The average input
power is thus 6 mW, except when the peak power is changed to vary the
average input power. The spectral evolution along the untapered fibre is
similar to that presented in Sections 3.1–3.2, which was dominated by SPM

over the first millimeters of propagation, and is shown in Fig. 3.11 (a, i).
Figure 3.11 (a, ii) shows the central wavelengths of the red-shifted and the
blue-shifted peaks along the fibre length z. Figure 3.11 (a, iii) shows the
corresponding power spectral FWHM of the peaks, and Fig. 3.11 (a, iv) shows
the average power within the FWHM of the peaks [2].

As seen from Fig. 3.9 (middle) tapering the fibre decreases the disper-
sion D along the taper, until it becomes normally dispersive for all optical
wavelengths when Λ � 0.96 µm. In the normal dispersion regime SPM and
GVD act together to temporally broaden the pulse faster than in the anoma-
lous dispersion regime, as noted in Section 3.1, which halts the SPM induced
spectral broadening. Tapering the fibre can therefore be used to shape the
resulting spectrum.

For SCG in an untapered fibre one can alter the resulting spectrum by
changing the fibre length, pump pulse parameters, and the PCF structural
parameters, e.g. the pitch Λ and the relative hole size d/Λ for a triangularly
structured PCF. Tapering the PCF provides additional adjustable parame-
ters, namely the tapering length, expressed here by zT, and the degree of
tapering, expressed here by ΛT. Fig. 3.11 (b) shows how the spectrum can
be modified by varying ΛT for a fixed value of zT. Fig. 3.11 (c) shows the
same for different values of zT for a fixed value of ΛT. Finally, Fig. 3.11 (d)
shows the effect of varying the input power for a fixed tapering structure.

It is seen that tapering the PCF can flatten the resulting spectrum sig-
nificantly. For example, for zT = 15 mm, ΛT = 0.9 µm, and Pav = 6 mW
[Fig. 3.11 (b–d, iii)], the FWHM of the spectrum is ∼ 300 nm. For compar-
ison, the largest FWHM in the untapered PCF is ∼ 150 nm at z = 7 mm
[Fig. 3.11 (a, iii)]. This is mostly because the spectral dip at λ ≈ 800 nm for
the untapered fibre [Fig. 3.11 (a, i), dashed, green] is avoided when tapering
the PCF [e.g. Fig. 3.11 (d, i), dashed, green].

Apart from flattening the spectrum, tapering can also be used to obtain
some control over the two peaks seen in Fig. 3.11; their centre wavelengths,
FWHM, and power depends on the tapering parameters. A spectrum with
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two peaks is useful for differential absorption OCT [98] or can be used to
make OCT images in two wavelength ranges simultaneously [74].

The work by Falk et al. thus demonstrated that tapering provides addi-
tional adjustable parameters to control the SCG [2].



Chapter 4

Picosecond pumping

It is well-known that supercontinuum generation (SCG) using femtosecond
pulses is typically (see, e.g., Chapter 3 or Refs. [1, 20, 56]) mainly caused
by self-phase modulation (SPM), fission of higher-order solitons followed by
soliton self-frequency shift (SSFS), and amplification of dispersive waves.
Since femtosecond pump lasers are typically complex systems, it is of great
interest to study efficient SCG using longer pulses, such as picoseconds or
even nanoseconds, which can be produced by simpler lasers [20, 61]. For
picosecond pulse pumping, SPM is typically less dominant since the SPM

spectral broadening is inversely proportional to the temporal width of the
input pulse [13]. Instead, it is known that the spectral broadening is mainly
caused by four-wave mixing (FWM) and stimulated Raman scattering [21,
61, 99, 100]. As will be shown in Section 4.2, FWM is also the dominant
supercontinuum (SC) mechanism in the cases investigated in this chapter.

Nikolov et al. showed that a SC pumped by low-average power picosecond
pulses could be generated more efficiently using proper dispersion design
[21]. It was found that the spectrum becomes more flat if the dispersion
profile ensures that the Stokes and anti-Stokes bands generated by partially
degenerate FWM are sufficiently close to the pump, so that they can broaden
themselves and merge with the pump into a flat continuum before losses and
temporal splitting decreases the peak power to a level where nonlinear effects
are no longer efficient. Furthermore, calculations showed that a broad FWM

gain bandwidth makes the SCG more robust against random variations of
the photonic crystal fibre (PCF) structure along the fibre length [21]. These
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calculations were based on experimental measurements of the dispersion
profile variation over a 150 m fibre span [101]. This means that fabrication
tolerances can be expected to be less stringent for fibres designed so that
the FWM gain bandwidth is broad.

It is demonstrated here how the dispersion profile of a cobweb PCF can
be engineered by modifying the fibre structural parameters and to what
extent this influences the SC spectrum. The investigation by Nikolov et
al. [21] only considered dispersion profiles for a few particular PCF designs.
In subsequent work by Frosz et al. a detailed numerical study was made
of how the dispersion parameters vary as a function of the cobweb PCF

core size and wall thickness [3, 7]. This included an analysis showing how
and why the maximum FWM bandwidth is obtained. It was investigated
how control of the core size and wall thickness can be used to modify the
position of the Stokes and anti-Stokes bands, the FWM gain bandwidth, and
how these FWM properties are affected by the Raman effect. It is thereby
possible to shape the SC spectrum and it was examined whether there is
an optimum core size and wall thickness. Shifting the Stokes/anti-Stokes
bands away from the pump increases the spectral width, but can introduce
dips in the spectrum. It was therefore also investigated how far away from
the pump the Stokes/anti-Stokes bands can be moved before introducing
dips in the spectrum.

The theory of FWM was presented in Subsection 2.2.3. It was shown
how the wavelengths of the amplified spectral components are determined
by the phase matching condition Eq. (2.27), which is determined by the
dispersion coefficients. It is therefore clear that the dispersion profile of a
fibre is of utmost importance for the resulting SC spectrum.

4.1 Four-wave mixing parameters

Several dispersion curves were calculated for varying core size dcore and wall
thickness w in the cobweb PCF structure [3, 7], using a semi-vectorial finite-
difference method [59, 60]. The calculation time for each fibre structure
was approximately 12–24 hours on a PC with a 2.9 GHz processor and 4.5
Gbytes RAM. Examples of three different dispersion profiles are given in
Fig. 4.1, for fixed pitch Λ = 8.53 µm and wall thickness w = 130 nm.

As described in Subsection 2.3.2, the dispersion coefficients are obtained
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Figure 4.1: Examples of three dispersion curves, calculated for a cobweb
structure (see inset) with wall thickness w = 130 nm, pitch Λ = 8.53 µm, and
core size dcore ranging from 1400 to 1475 nm.

by fitting the calculated dispersion profiles to polynomials. Dispersion co-
efficients up to and including β̄14 were used.

The obtained dispersion coefficients were used to calculated the phase
mismatch κ [Eq. 2.27] and the gain g [Eq. 2.26] for three different core sizes,
as shown in Fig. 4.2. For the three selected fibre designs one has β̄2 < 0,
β̄2 ≈ 0, and β̄2 > 0, for the dcore = 1400 nm, 1450 nm, and 1475 nm fibres,
respectively. For the dcore = 1400 nm fibre, the Stokes gain bandwidth is
λd − λp, and the anti-Stokes gain bandwidth is λp − λc (see Fig. 4.2). The
Stokes gain region is thus directly connected to the anti-Stokes gain region
at λp. When β̄2 is increased to almost zero, as for the dcore = 1450 nm
core fibre, the Stokes and anti-Stokes peaks (the wavelengths for which the
gain g is maximum, at κ = 0) shift away from the pump and their gain
bandwidths increase. However, as soon as β̄2 becomes positive, as for the
dcore = 1475 nm core fibre, the Stokes and anti-Stokes bands separate and
their gain bandwidths decrease. In Fig. 4.2 the anti-Stokes gain bandwidth
in this case is λa−λb and there is no energy transfer to wavelengths between
λa and λp from partially degenerate FWM. Similarly, the Stokes band will
be separated from the pump by a region without gain. From Fig. 4.2 we
therefore expect that PCFs where β̄2 is positive will lead to Stokes and anti-
Stokes spectral bands far from the pump, but possibly with a discontinuity
between the pump and the Stokes/anti-Stokes spectral bands. As shown in
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Figure 4.2: Left: Phase mismatch κ for cobweb PCFs with Λ = 8.53 µm,
w = 130 nm, and dcore = 1400 nm (solid, blue), dcore = 1450 nm (dashed,
green), and dcore = 1475 nm (dashed-dotted, red); the pump wavelength is
647 nm, γ = 0.15 (Wm)−1 (the slight variation of γ with core size is neglected
in this figure), and P0 = 400 W. The upper and lower horizontal lines at
κ = ±2γP0(1 − fR) = ±98.4 m−1 indicate the borders of the gain region. For
d = 1400 nm, β̄2 < 0; for d = 1450 nm, β̄2 ≈ 0; and for d = 1475 nm, β̄2 > 0.
Right: Corresponding parametric gain given by Eq. (2.26).

Section 4.2 this can occur if the fibre is too short. On the other hand, for
fibres with a small but negative β̄2, there is FWM gain for a broad continuous
range of wavelengths from the pump to the immediately adjacent Stokes
and anti-Stokes gain regions. This should therefore result in a smoother
spectrum.

It is usually recommended to pump in the anomalous dispersion regime,
close to the zero-dispersion wavelength (ZDW) (corresponding to a small,
negative β̄2), to obtain phase matching for FWM [13]. In the cases presented
here, it is noted that since β̄4 < 0 (shown below), phase-matching can
also occur when pumping in the normal dispersion regime. However, an
advantage of anomalous pumping is still expected, because it is known from
Fig. 4.2 that this should result in a smoother spectrum.

As shown in Fig. 4.3, it was found that β̄2 can be significantly modified
by varying the core size dcore and/or the wall thickness w. It was also
found that the fourth-order dispersion parameter β̄4 is almost constant at
around −4 × 10−5 ps4/km when varying dcore and w within the parameter
space investigated here. As seen from Eq. (2.27), a nonzero β̄4 is therefore
expected to limit the FWM gain bandwidth when β̄2 = 0.
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Figure 4.3: Dispersion parameters β̄2 (left) and β̄4 (right) calculated for a
wide range of two of the cobweb-fibre structural parameters: core size dcore

(horizontal axis) and wall thickness w (given in the inset).

The important thing to note from Fig. 4.3 is that although one cannot
obtain a dispersion profile with zero curvature (β̄4 ≈ 0, note that the slope of
the dispersion profile, β̄3, is unimportant for the phase-matching condition)
within the parameter range investigated here, it is still possible to tune β̄2

in the range −5 to 15 ps2/km through selection of core size and/or wall
thickness. This means that the phase mismatch plot can be significantly
changed, as indicated in Fig. 4.2, and thereby the wavelength range at which
new frequencies are generated can be controlled. The Stokes and anti-Stokes
gain bandwidths are plotted for various fibre designs in Fig. 4.4, and defined
in Fig. 4.2 as the regions where |κ| < 2γP0(1 − fR). The anti-Stokes gain
bandwidth in Fig. 4.2, e.g., is λa−λb for the d = 1475 nm fibre, and λp−λc

for the d = 1400 nm fibre.
It is seen from Fig. 4.4 how the Stokes and anti-Stokes gain bandwidths

increase as the core size is increased, until dropping rapidly after the core
size where β̄2 = 0 (indicated by the vertical lines). This is understood
graphically from Fig. 4.2, by noting the behavior of the phase mismatch
plot when β̄2 goes from below to above zero.

The Stokes and anti-Stokes wavelengths for several fibre designs are plot-
ted in Fig. 4.5. The Stokes and anti-Stokes wavelengths are the wavelengths
at which κ = 0 and there is therefore maximum gain at these wavelengths,
see Eq. (2.26). It is seen that the more the core size and/or the wall thick-
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Figure 4.4: Stokes (top) and anti-Stokes (bottom) gain bandwidths as a
function of core size dcore (horizontal axis) and wall thickness w (given in the
inset). The vertical lines indicate the core size at which β̄2 = 0 for the various
wall thicknesses.

ness is increased, the further away the Stokes and anti-Stokes lines shift from
the pump. However, it is known from Fig. 4.4 that the gain bandwidth be-
comes narrow when the core size and wall thickness is large enough for β̄2

to become positive. As seen in Section 4.2, a small gain bandwidth leads
to spectral dips in the SC. There is therefore a tradeoff between the flat-
ness and the width of the SC spectrum [3, 7]. Furthermore, the SCG is less
robust to PCF structural variations (e.g. core size and wall thickness) along
the fibre length if the gain bandwidth is small [21].

4.2 Calculated spectra

To investigate how the FWM properties discussed in Section 4.1 affect the
resulting SC spectrum, pulse propagation in various fibre designs was sim-
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ulated using Eq. (2.2). The frequency dependence of Aeff is small and
therefore neglected; it was approximated with the core area, Aeff ≈ Acore =
π[dcore/2]2. The attenuation coefficient α was also assumed to be wave-
length independent and set to 300 dB/km, which is realistic for a cobweb
fibre with the core sizes modelled here [57]. The simulations were done
using 217 points and a temporal resolution of Δt = 1.8 fs, giving a time
window of Tmax = 236 ps. The local goal error used in the adaptive step
size method was set to δG = 10−7. This resulted in a step size of typically
1–4 µm. The calculations were first performed without loss. The relative
change in the total photon number P was less than 2.5%. The calculations
were then repeated, but included the 300 dB/km wavelength independent
loss. The simulation time for propagation in 1.2 m of fibre varied between
11 days (dcore = 1425 nm, w = 130 nm) and 31 days (dcore = 1475 nm,
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w = 130 nm) on a 2.2 GHz standard PC. The simulation time depends on
the structural parameters because modulation instability (MI)/FWM leads
to temporal fluctuations in the time domain of the pulse (Subsection 2.2.3).
The further away the Stokes and anti-Stokes bands are located from the
pump, the faster the temporal fluctuations [13]. The faster the pulse fluc-
tuates in the time domain, the shorter the step size has to be so as to keep
the numerical error of each step below the local goal error. This is done
automatically by the adaptive step-size method.

The pump pulse parameters are: centre wavelength λ0 = 647 nm, power
full width at half-maximum (FWHM) TFWHM = 30 ps, and peak power
P0 = 400 W. As in Chapter 3 the power spectral densities S(λ) presented
here are normalized so that

∫
S(λ)dλ = Pav, where the average power is

calculated from a repetition rate frep = 590 kHz [see Eq. (A.6)]. Similar
pump parameters were used in the theoretical investigation by Nikolov et
al. [21] and in the experiments by Coen et al. [61], so these are physically
realistic parameters.

The spectra presented in this section have been smoothed over 128
points, resulting in a frequency resolution of Δν = 128/Tmax ≈ 0.5 THz,
corresponding to approximately 0.8 nm in the vicinity of the pump wave-
length 647 nm.

Figure 4.6 shows the evolution of the calculated spectra along the fibre
length for two different core sizes. It is clearly seen how a larger core size
results in Stokes and anti-Stokes bands further away from the pump. Fur-
thermore, the location of the Stokes and anti-Stokes bands is seen to agree
excellently with Fig. 4.5 and the gain bands indicated in Fig. 4.6. It is also
noted that for a core size of dcore = 1425 nm, the Stokes and anti-Stokes
bands are already merged with the pump at z = 0.9 m, and a smooth broad
continuum is formed. For a core size of dcore = 1475 nm, the merging is first
observed at z = 1.2 m. Even at this fibre length, the merging has not been
as efficient as for the smaller core, and therefore spectral dips occur between
the pump and the Stokes and anti-Stokes bands. It is possible that further
propagation in a longer fibre would lead to further merging and a decrease
of the spectral dips, but this was not investigated since the simulations are
quite time-consuming. Furthermore, the bandwidth of the spectrum con-
tinuously increases along the fibre, and the propagation Eq. (2.2) can only
be assumed valid for forward-travelling waves with a bandwidth less than
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Figure 4.6: Calculated spectra for dcore = 1425 nm (top) and 1475 nm
(bottom) at fibre lengths z = 0.6 m (solid, blue), z = 0.9 m (dashed, green),
and z = 1.2 m (dotted, red). Wall thickness w = 130 nm. The parametric
gain g is included (dashed-dotted, black) in arbitrary units to show how well
the locations of the Stokes and anti-Stokes bands are predicted.

≈ 1/3 of ν0 = c/λ0 [33]. A frequency bandwidth of Δν = ν0/3 corresponds
to a wavelength bandwidth of Δλ ≈ cΔν/ν2

0 = λ0/3 = 647 nm/3 ≈ 216
nm. There should therefore not be significant spectral power outside the
wavelength range ≈ 539–755 nm. The simulations have already reached this
limit after 1.2 m of propagation.

Figure 4.7 (left) compares the calculated spectra after 1.2 m of prop-
agation in 3 different fibre designs, all with a wall thickness of w = 130
nm. From Fig. 4.3 it is known that β̄2 changes sign at a core size of ap-
proximately 1450 nm. As is also seen from Fig. 4.4, it is therefore expected
that spectral dips appear between the pump and the Stokes and anti-Stokes
bands in the SC when the core size exceeds 1450 nm (for a fibre with w = 130
nm). This is also what is observed in Fig. 4.7 (left): Increasing the core size
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Figure 4.7: Left: Calculated output spectra from three different fibres.
Right: Calculated output spectra for the dcore = 1450 nm fibre with and
without a wavelength-independent loss of 300 dB/km. The wall thickness
w = 130 nm and the propagation length z = 1.2 m in both figures.

from 1450 to 1475 nm widens the spectrum, but introduces a spectral dip
between the pump and the Stokes and anti-Stokes lines. This demonstrates
the important role of accurate fibre design to optimize the dispersion profile
to obtain a flat SC.

Finally, in Fig. 4.7 (right) two simulations with and without the
wavelength-independent loss of 300 dB/km are compared. For a fibre length
of 1.2 m, the linear loss is only 0.36 dB. Nevertheless, the nonlinear effects
could be highly sensitive to even a small loss, which is therefore investigated.
It is seen in Fig. 4.7 (right) that including the loss does not significantly
affect the central part of the SC spectrum, and only slightly reduces the
width of the spectrum. In the cases investigated here, it is therefore seen
that the relatively high losses of the nonlinear PCF do not have a significant
effect on the SCG.
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4.3 Physical mechanisms

As mentioned above, there is an excellent agreement between the location
of the Stokes and anti-Stokes bands calculated in Fig. 4.5 and the location
of the Stokes and anti-Stokes peaks in the simulated spectra in Fig. 4.6.
The peaks merge due to SPM and cross-phase modulation (XPM) [102], and
the degree of merging with the pump is determined by the distance between
the pump wavelength and the Stokes and anti-Stokes bands. The resulting
spectra can thus be explained physically solely on the basis of FWM, SPM,
and XPM.

The influence of the Raman effect is clearly seen from the equations
in Subsection 2.2.3. From Eq. (2.26), which can be assumed valid because
Ωmax > 3×ΩR for dcore > 1415 nm (w = 130 nm), the maximum parametric
gain obtained for κ = 0 is

gmax = γP0(1 − fR) , Ωmax � ΩR, (4.1)

which means that the Raman effect is responsible for reducing the FWM

gain by a factor of (1 − fR). This was confirmed by making simulations
where fR was set to zero, which led to a more rapid growth of the Stokes
and anti-Stokes peaks than with fR = 0.18 [3].

The Raman effect is also responsible for shifting the location of the
Stokes and anti-Stokes peaks. From Eq. (2.25), it is found for the case
where all higher-order dispersion terms are negligible [3]:

Ω2
max =

−2γP0(1 − fR)
β̄2

, Ω � ΩR. (4.2)

In this case, Ωmax is reduced by a factor of
√

(1 − fR), corresponding to a
shift of ≈ 10%. For the case where β̄2 is negligible (close to the ZDW) and
dispersion terms higher than β̄4 are neglected, one obtains [3]

Ω4
max =

−24γP0(1 − fR)
β̄4

, Ω � ΩR, (4.3)

which means that in this case the Raman effect only results in a peak shift
of 1 − (1 − fR)1/4 ≈ 5%.

At the beginning of the fibre, the Raman effect is therefore responsible
for reducing the growth rate of the FWM peaks, and slightly shifting the
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location of the peaks. For longer fibres it is expected that the pulse will
eventually break up into femtosecond solitons due to MI, as demonstrated
for quasi-continuous-wave (CW) pulses in Chapter 5. The Raman effect then
causes the solitons to red-shift (soliton self-frequency shift) [13].

4.4 Summary and discussion of chapter 4

It was shown how the design of a cobweb PCF affects SCG using picosecond
pulses with low average power. It was found that there is an inherent
tradeoff between the width of the spectrum (determined by the location of
the Stokes and anti-Stokes bands) and the flatness of the spectrum. The
spectrum is relatively flat when there is a continuous gain region between
the pump and the Stokes and anti-Stokes lines. This occurs for fibres where
β̄2 < 0 (pumping in the anomalous dispersion region), and can be achieved
by appropriate fibre design. Calculations of pulse propagation in the fibres
demonstrated how an increase in core size of only 25 nm significantly affects
the resulting spectrum, by widening the spectrum but at the same time
degrading the flatness of the spectrum.

For comparison, random variations of the core size along the fibre length
arising during fabrication are typically less than 1% over hundreds of metres
of fibre [103]. Measurements show that the outer diameter of a 125 µm fibre
varies less than ±0.5 µm over such long fibre lengths. Assuming that the
core size scales with the outer diameter, this corresponds to a variation in
core size of less than ±5.6 nm for a 1400 nm core size. For shorter fibre
lengths, such as the ones modelled here, the variation in core size can be
expected to be significantly less [103]. An increase in core size of 25 nm
can therefore not be expected to occur due to random variations along
the fibre length, and the SCG should therefore be robust against such fibre
irregularities.

The generalisation in Chapter 2 of the standard FWM theory [13] was
used to show that the Raman effect is responsible for reducing the FWM

gain, and for slightly shifting the Stokes and anti-Stokes peaks closer to the
pump, in the case where the peaks are much further away from the pump
than the Raman shift of 13.2 THz in silica.

It was also shown that the relatively high loss of the cobweb PCF does
not significantly affect the SCG.



Chapter 5

Continuous-wave pumping

As described in Chapter 3, supercontinuum (SC) sources are often pumped
using femtosecond lasers (see, e.g., [20, 51, 54, 56, 72, 78]), offering pulses
with several kilowatts of peak power [71]. Femtosecond lasers are typi-
cally complex and bulky; therefore more compact picosecond [61] and even
nanosecond [20] pump sources have also been used. Physical mechanisms
responsible for spectral broadening when pumping with femtosecond and
picosecond pulses were investigated in Chapters 3 and 4, respectively.

Advances in fibre laser technology in recent years have also led to
continuous-wave (CW) fibre lasers with sufficiently high power (∼ 0.1–15
W) to be used for supercontinuum generation (SCG) [104–106]. It has been
demonstrated that a CW-pumped SC source provides sufficiently high out-
put power and broad bandwidth to be used for ultrahigh resolution optical
coherence tomography (OCT) [107]. Experimental characterization of the
noise of the CW pumped SC showed that the relative intensity noise (RIN)
can be 30-50 dB lower than that achieved using a femtosecond pump [108].
Other experiments with a CW-pumped SC found RIN values comparable to
those with a femtosecond pump [109].

CW pumping for SCG has been investigated both by pumping in the
anomalous dispersion region (ADR) [105, 106, 108, 110–112] and the normal
dispersion region (NDR) [113, 114]. This chapter focuses on pumping in
the ADR, as this is known to result in the broadest spectra (see references
above). The spectral broadening achieved using CW pumping in the ADR

has previously been explained as being seeded by modulation instability
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(MI), which causes break up of the CW into solitons. The solitons are
then red-shifted due to the soliton self-frequency shift (SSFS) [108, 110–
112]. During the red-shift the solitons may also transfer energy to blue-
shifted dispersive waves. Thus, after MI-induced break up into solitons, the
spectral broadening is essentially caused by the same mechanisms as when
using femtosecond pumping [56].

Frosz et al. recently found that the role of an important physical mech-
anism had been overlooked in some of the latest work on CW pumped SCG

[4]. It turns out that solitons generated directly from MI are too temporally
broad to undergo any significant red-shift. As shown originally by M. N. Is-
lam et al. the MI-generated solitons undergo collisions, in which they can
transfer energy between each other [115]. It is then possible for one of the
solitons to acquire sufficient peak power to undergo a large red-shift.

In Section 5.1 an overview of previous numerical modeling of CW-
pumped SCG is provided, and the choice of how to model the CW input is
justified. A description of the implemented phase noise model and propaga-
tion simulation is also given. Section 5.2 describes the primary mechanisms
involved in the spectral broadening during propagation along the fibre. It is
shown that soliton collisions can play a crucial role in CW-pumped SCG. Sec-
tion 5.3 investigates the influence of the time window width, the quasi-CW

pulse temporal width, the pump spectral linewidth, and the fibre dispersion
profile. First, Subsection 5.3.1 shows how the influence of soliton collisions
is practically absent, if the time window of the calculations is too narrow.
The role of the quasi-CW pulse length is studied in Subsection 5.3.2. In
Subsection 5.3.3 results are presented showing that the output spectrum
can differ significantly depending on the spectral linewidth of the CW pump
laser. It is shown in Subsection 5.3.4 that SCG in a fibre with smaller dis-
persion at the pump wavelength is less sensitive to the spectral linewidth of
the pump laser. Section 5.4 compares the simulation results to experimen-
tal measurements found in the literature. The chapter is concluded with a
summary and discussion in Section 5.5.
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5.1 Modelling of a partially coherent continuous-

wave input

One important aspect of modelling the nonlinear propagation of a CW beam
in an optical fibre is how to model the CW input. In the following, an account
is first given of previous numerical modelling of the CW input (Subsection
5.1.1). The phase noise model implemented here is described in Subsection
5.1.2. The propagation modelling is briefly described in Subsection 5.1.3 and
the dispersion profiles for the fibres modelled here are shown. Important
numerical considerations are made in Subsection 5.1.4.

5.1.1 Previous numerical modelling

Kobtsev and Smirnov used the one photon per mode approach [111]. This
method has previously been used to model SCG using picosecond pulses [61]
and consists of phenomenologically adding one photon with random phase
to each frequency bin of the input field (see Appendix A.4). It was shown
by Smith in 1972 that this fictitious injection of photons to the input field
leads to the same output power at the Raman Stokes wavelength (down-
shifted from the pump by 13.2 THz) as Raman amplification of spontaneous
emission along the fibre length [116]. However, as shown in the following
this approach suffers mainly from two drawbacks: (1) There is no inherent
spectral linewidth, and (2) the power spectral density at the Raman Stokes
wavelength can be significantly underestimated. As mentioned in Subsec-
tion 5.1.2 it is reasonable to assume a Lorentzian spectrum for a partially
coherent CW field. It is shown in Fig. 5.1 that a Lorentzian spectrum for a
CW field with an average power of 10 W, centre wavelength of 1064 nm and
a FWHM power spectral width of 30 GHz (∼ 0.1 nm) has significantly more
spectral power at the Raman Stokes wavelength of 1116 nm, than a CW

field containing one photon per mode. The one photon per mode method
is therefore unsuited to investigate the influence of the pump laser spectral
linewidth and may underestimate the Raman Stokes power spectral density
at the input. This is critical when Raman scattering is dominant because
the input Raman Stokes power acts as a seed for the exponential gain along
the fibre.

Vanholsbeeck et al. also made a phenomenological approach by taking
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Figure 5.1: Comparison of power spectral density S(λ) for two noise models:
CW with one photon per mode (blue, solid) and CW with phase noise (resulting
in a Lorentzian spectrum) corresponding to FWHM linewidth of 30 GHz (∼ 0.1
nm) (green, dashed). Average power of input field is 10 W. Red dotted curve:
power spectrum of super-Gaussian pulse with phase noise (30 GHz linewidth),
30 ps width and 10 W peak power [this spectrum is scaled so integrating over
the spectrum gives 10 W to allow comparison with the (green, dashed) CW

spectrum].

the input spectrum of the field to be Ã(ν) ∝ √
Sm(ν) exp[iφ(ν)], where

φ(ν) is a random spectral phase and Sm(ν) is the measured power spectral
density of the pump laser to be modelled [112]. This approach mathe-
matically assures that the power spectrum of the input field is as desired,∣∣∣Ã(ν)

∣∣∣2 ∝ Sm(ν). But the choice of randomly imposing a spectral phase
has no physical justification. The strong temporal fluctuations of the input
field A(t) obtained by inverse Fourier transform of Ã(ν) are therefore not
necessarily present in a real partially coherent CW beam, as also stated by
the authors in Ref. [112]. Recently, it was pointed out by Barviau et al. that
modifying the statistics of the spectral phase φ(ν) has a significant influ-
ence on the spectral evolution along the fibre [114]. One must therefore be
careful when using arbitrary statistical properties for the spectral phase.

Cavalcanti et al. used a time-independent average field on which noise
appears as small fluctuations in amplitude and phase to study the influ-
ence of MI on the statistical properties of a partially coherent beam [117].
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Mussot et al. disregarded amplitude fluctuations and included only phase
noise to investigate the spectral broadening mechanism [110]. As shown
in Subsection 5.1.2, the phase noise can be directly related to the measur-
able linewidth of a CW laser. Furthermore, the underlying phase-diffusion
model is widely accepted as an appropriate model for lasers operating far
above threshold (see e.g. Refs. [110, 117], and references therein). Since this
method involves both a physically justified choice of phase noise statistics
and includes a finite spectral linewidth, it is physically reasonable and used
in the work presented here [4]. This also allows the influence of the spectral
linewidth of the CW pump on the SCG to be investigated.

5.1.2 Phase noise model

The input field envelope is modelled here as [110, 117]

A(0, t) =
√

P0 exp[iδφ(t)], (5.1)

where δφ(t) are small fluctuations with zero ensemble average, 〈δφ〉 = 0.
This means that for any t, averaging over many statistical realizations (en-
sembles) of δφ(t) gives a zero average. P0 is the power of the CW input
field. δφ is modelled as a Gaussian random process [118].

In the following, it is determined how to properly relate δφ to a mea-
surable quantity, namely the FWHM power spectral linewidth ΔνFWHM of
the CW input.

The random phase fluctuations can be seen as arising from a random
fluctuation νr of the CW frequency ν0, so that the instantaneous frequency
νi is [118]

νi = ν0 +
1
2π

d(δφ)
dt

= ν0 + νr(t). (5.2)

It can be assumed in most cases that νr(t) is a zero mean, statistically
stationary fluctuation [118]. Here, as in Ref. [117], νR(t) is modelled as
Gaussian white noise with zero mean and variance σ2

νr
. The phase fluctua-

tion δφ(t) is then found from [118]

δφ(t) = 2π
∫ t

−∞
νr(ξ)dξ, (5.3)
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and is a statistically nonstationary random process [118]. It remains to
determine the relation between σ2

νr
and ΔνFWHM, which is done in the

following.
It can be shown that the so-called structure function Dδφ(τ) = 〈[δφ(t +

τ) − δφ(t)]2〉 is given by [118]

Dδφ(τ) = 8π2τ

∫ ∞

0
Γνr(η)dη, (5.4)

where Γνr is the autocorrelation function of νr(t). Using the Wiener-
Khinchin theorem [118]

Γνr(τ) =
∫ ∞

−∞
Sνr(ν) exp(−i2πντ)dν, (5.5)

where SνR
(ν) is the power spectral density of νr(t), one obtains for white

noise (i.e. Sνr frequency independent) over a limited bandwidth B:

Γνr(τ) = Sνr

∫ B/2

−B/2
exp(−i2πντ)dν. (5.6)

The bandwidth limit is introduced because the split-step Fourier method
implies both a finite time- and frequency-domain in the calculations. Since
σ2

νr
= Γνr(0) [118], one has

σ2
νr

= Γνr(0) = Sνr

∫ B/2

−B/2
dν = SνrB ⇒ Sνr =

σ2
νr

B
. (5.7)

Inserting this in Eqs. (5.4) and (5.6), one obtains

Dδφ(τ) = 8π2τ
σ2

νr

B

∫ ∞

0

∫ B/2

−B/2
exp(−i2πνη) dν dη = 4π2τ

σ2
νr

B
. (5.8)

The structure function Dδφ(τ) is related to ΔνFWHM by [117] Dδφ(τ) =
2πΔνFWHMτ , which together with Eq. (5.8) finally gives the following rela-
tion between σ2

νr
and ΔνFWHM:

σ2
νr

=
ΔνFWHMB

2π
. (5.9)
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Figure 5.2: Calculated dispersion profiles for fibres considered in this chapter.

In summary, νr(t) is stochastically sampled as Gaussian white noise for
each t, with zero mean and variance σ2

νr
. Equation (5.3) then gives the phase

fluctuation δφ(t), which is inserted in Eq. (5.1) to obtain the input field
for the propagation simulation. Due to the assumptions of the statistical
properties of the phase noise, the power spectrum of the input field has a
Lorentzian line shape [117], with a FWHM given by ΔνFWHM.

5.1.3 Propagation modelling

The propagation of the CW field in the photonic crystal fibre (PCF) is sim-
ulated using Eq. (2.2). The dispersion parameters β̄m are obtained from
a polynomial fit to the dispersion profile calculated using fully-vectorial
plane-wave expansions [58] and shown in Fig. 5.2. The triangular struc-
tured PCF with pitch Λ = 1.72 µm and relative hole size d/Λ = 0.65
corresponds to a fibre made by Crystal Fibre A/S. This was also the fi-
bre used in Refs. [106, 107]1. To investigate the influence of the disper-
sion profile, a PCF with the relative hole size d/Λ = 0.378 was also con-

1Note that both papers state that d = 0.65 µm, but this does not correspond with the
reported core size of dcore = 2.3 µm (dcore ≈ 2Λ− d) and is believed to be a misprint [92].
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sidered. β̄2 = 4.38 × 10−26 s2/m and β̄2 = 2.03 × 10−27 s2/m for the
d/Λ = 0.65 and the d/Λ = 0.378 fibre, respectively. The transverse field
distribution F (x, y, ω) of the fundamental mode was also calculated with
the fully-vectorial plane-wave expansions. From this Aeff(ω) was calculated
using the more general definition, Eq. (2.36). This resulted in nonlinear
parameters of γ(λ0 = 1064 nm) = 48.7 (W km)−1 and 24.9 (W km)−1 for
the d/Λ = 0.65 and the d/Λ = 0.378 fibre, respectively.

The propagation Eq. (2.2) was solved using the improved adaptive step
size method described in Subsection 2.5.1. The relative change in photon
number was less than 5.5% for all results presented in this chapter. An
example of the change in photon number along the fibre was shown in
Fig. 2.4. Figure 5.3 shows the resulting spectra for the same parameters as in
Fig. 2.4 and compares the spectra obtained with a change in photon number
of 3.9% and 6.5%, respectively (the latter is only shown for comparison
and therefore does not violate the 5.5% limit for presented results). It
is seen that despite the different change in photon number, the spectra
are practically indistinguishable, except that the red-shifted soliton centred
around ∼ 1225 nm is red-shifted approx. 8 nm more for the case with larger
change in photon number. It can therefore be expected that reducing the
photon number further would mostly result in solitons slightly less red-
shifted.

5.1.4 Numerical considerations

An ideal CW field has an infinite extent in time, but with the split-step
Fourier method one can only model the propagation of an input field with
finite temporal width. Furthermore, the method implies that the input field
is periodic [13]. This means that pulse energy going out through one side
of the time window will reappear from the other side of the time window.

Due to the phase noise, the phase δφ(0) of the input field at one edge
of the time window, will differ from the phase δφ(Tmax) at the other edge
of the time window. There will therefore be a large phase discontinuity
in the periodic input field (Fig. 5.4, bottom). Unfortunately, this phase
discontinuity leads to large intensity fluctuations at the edges of the time
window, since phase noise is converted to intensity noise upon propagation
in a dispersive medium (see, e.g., Ref. [119]).
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Figure 5.3: Resulting spectra at z = 80 m when using either the step size
selection criteria δ ≈ δG = 10−6 (solid, blue) or δ/(h/L) ≈ δGh = 1 (green,
dashed), resulting in a change of photon number of 6.5% or 3.9%, respectively.
Parameters: L = 100 m, Λ = 1.72 µm, d/Λ = 0.65, quasi-CW input with
λ0 = 1064 nm, P0 = 10 W, 2TsG = 30 ps (explained in Subsection 5.1.4) and
ΔνFWHM = 30 GHz.

To avoid this problem in the numerical simulations, one can artificially
replace the CW field with a broad Gaussian [117] or super-Gaussian [105]
pulse. The input field [Eq. (5.1)] is multiplied with a super-Gaussian pulse,

A(0, t) =
√

P0 exp[iδφ(t)] exp

[
−1

2

(
t

TsG

)2m
]

, (5.10)

where m = 10 is used here, and TsG is the 1/e intensity half-width of the
super-Gaussian pulse, see Fig. 5.4 (top). It was shown in Fig. 5.1 that
multiplication with the super-Gaussian pulse practically does not affect the
spectrum of the CW input field (there is almost no difference between the
green and the red curves), for the values of TsG used here.

There are now two important deviations of the model from a real CW

field: (1) TsG is finite, meaning that due to dispersion some of the pulse
energy, e.g. in the form of a soliton with a carrier frequency slightly offset
from the centre frequency of the CW field, can move beyond the edges of
the super-Gaussian pulse. This soliton will then no longer interact with the
remaining super-Gaussian pulse. (2) The time window is finite; as explained
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Figure 5.4: An illustration of the modelled periodic super-Gaussian input
pulse. Top: Power variation in time. Bottom: Phase fluctuation in time
for one particular ensemble. In this example the width of the time window
Tmax is 59.0 ps, the width of the super-Gaussian pulse is 2TsG = 30 ps, and
ΔνFWHM = 265 GHz.

before this means that pulse energy leaving one side of the time window
reappears from the other side of the time window, as was also described in
Ref. [112].

Instead of an infinite CW field, one is thus actually modelling a CW

laser which is turned on and off periodically. Each time the laser is turned
on, the phase noise fluctuations are the same as before (see Fig. 5.4). The
influence of these deviations decreases as the widths of the super-Gaussian
pulse and the time window are increased. In Section 5.3, the effects of these
limitations are examined closer.

The power spectra in this chapter are scaled so that
∫

S(λ)dλ gives the
average power within the time window [Eq. (A.27)].

It should be noted that an optical spectrum analyser typically has a min-
imum integration time on the order of milliseconds. One should therefore in
principle simulate a quasi-CW pulse with this duration to obtain sufficient
statistical information to compare with an experimental measurement. Un-
fortunately, the calculation time of the numerical simulations based on the
fast Fourier transform (FFT) scales with Np log2(Np) (see e.g. [65]), where
Np is the number of computational points and is proportional to the width
of the time window for a fixed temporal resolution. To decrease calcula-
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tion time it is therefore common to simulate several shorter pulses, each
only differing by the random initial conditions, and then average over the
ensembles [111, 112, 117].

5.2 Collision of solitons

For the cases presented in this chapter it was found that three physical mech-
anisms are mainly responsible for the spectral broadening. One mechanism
is Raman gain, which occurs when some of the power of a strong optical
field (the pump) is converted to a longer wavelength (the Raman Stokes
wave), as explained in Subsection 2.2.4. A weak optical field propagating at
a frequency upshifted from the pump by 13.2 THz (the anti-Raman Stokes
wave) is exponentially damped due to energy transfer to the pump.

The second mechanism is MI (Subsection 2.2.3) which causes a CW pump
to break up into a periodic pulse train [13]. The pulse train can then evolve
into a series of solitons.

The third mechanism is collision of solitons [115]. The unperturbed
soliton (Subsection 2.2.2) propagates without changing its shape, amplitude
or width even after collision with a soliton of different carrier frequency (and
therefore different group velocity) [120]. Perturbations such as third-order
dispersion (TOD), self-steepening, and delayed Raman response [all included
in Eq. (2.2)] lead to, in the case of TOD, emission of radiation during collision
[121]. Two solitons colliding in the presence of delayed Raman response
transfer energy from the soliton with the highest carrier frequency to the
other soliton; this has been shown by both numerical simulations [122] and
theoretical analysis [115, 123, 124]. In general, solitons can transfer energy
during collisions in non-integrable models; there is some indication that
energy is preferentially transferred to the soliton with the largest amplitude
[125]. A soliton propagating in a medium with delayed Raman response is
downshifted in frequency (red-shift) during propagation due to the SSFS,
as described in Subsection 2.2.4. The red-shift is enhanced during collision
with another soliton [122]. It is expected that delayed Raman response is the
perturbation with the most significant effect on soliton collisions [124, 126].

All of these physical mechanisms are studied in the spectrograms
[Eq. (3.2), with αsp = 72 fs] shown in Fig. 5.5. Initially, the quasi-CW

pump breaks up into a periodic pulse train after just a few metres of prop-
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Figure 5.5: Spectrograms for one simulation of propagation in the d/Λ = 0.65
fibre. Input super-Gaussian pulse width 2TsG = 30 ps, ΔνFWHM = 30 GHz,
time window Tmax = 59 ps. Note that the colour scale changes during propaga-
tion, as some of the solitons acquire higher peak power. The horizontal white
line on the bottom figures indicates the Raman Stokes wavelength at 1116 nm.
Animation expected to be available online after publication of Ref. [4].

agation due to MI. To verify that the break up is caused by MI,
∣∣∣P̃ (ν)

∣∣∣2
has been plotted in Fig. 5.6 (left), where P̃ (ν) is the Fourier transform of
the pulse power P (t) = |A(t)|2. MI provides maximum gain for oscillations
with a frequency given by [13]

νmax =

√
γP0

2π2
∣∣β̄2

∣∣ , (5.11)

which is indicated in Fig. 5.6 (left) by vertical lines for the two fibres con-
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Figure 5.6: Left: Frequency spectrum of pulse power P (t) at z = 9 m cal-
culated for one simulation for the d/Λ = 0.65 fibre (blue, solid) and one sim-
ulation for the d/Λ = 0.378 fibre (green, dashed). The vertical lines indicate
the frequency with maximum MI gain in the corresponding fibres: νmax = 0.75
THz and 2.5 THz for the d/Λ = 0.65 and the d/Λ = 0.378 fibre, respectively.
Right: Maximum peak power along the fibre length for the same simulation
as shown in Fig. 5.5.

sidered here [Eq. (5.11) can be derived from Eq. (2.25) by neglecting all
higher-order dispersion terms and the Raman effect]. It is seen that oscil-
lations at the MI frequency are significant for both fibres and are therefore
the main cause of pulse train formation.

As seen from the spectrograms, Fig. 5.5, the periodic pulse train evolves
into solitons. The number of solitons can be estimated as the ratio between
the super-Gaussian pulse width and the period TMI = 1/νmax of the periodic
pulse train: 2TsG/Tm = 2TsG × νmax = 30 ps × 0.75 THz ≈ 23. This
corresponds well with the number of solitons in the top right of Fig. 5.5.
The solitons have slightly different group velocities for two reasons. First,
the carrier frequency of the CW pump fluctuates in time due to the phase
noise. Second, they have slightly different temporal widths, which means
that the rate of SSFS is also different. SSFS causes the carrier frequency
ν0 of a soliton to red-shift as it propagates along the fibre, as described in
Subsection 2.2.4.

Because of the slightly different group velocities, and perhaps to some
degree also by soliton attraction/repulsion [13], the solitons undergo col-
lisions as they propagate. As previously stated, each collision leads to a
fractional amount of energy transfer to the most red-shifted soliton. A soli-
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ton that gains energy from a collision increases its peak power and decreases
its temporal width to maintain its fundamental soliton shape [see Eq. (2.15)]
[13]. The decrease in temporal width leads to an increased red-shift rate,
which in turn modifies the group velocity. This soliton will then also collide
with more solitons. The mechanism is therefore self-amplifying. It is seen
in Fig. 5.5 how one particular soliton gradually gains energy and obtains
such a short temporal width that it red-shifts significantly faster than the
other solitons. Figure 5.6 (right) shows the maximum peak power of the
propagated field along the fibre, for the same simulation as in Fig. 5.5. It
is known from Fig. 5.5 that the soliton formation from MI is complete after
less than ∼ 10 m of propagation. It is seen from Fig. 5.6 (right) that the
maximum peak power continues to increase along the fibre after a prop-
agation length of z = 10 m because of the energy transfer during soliton
collisions.

The temporal width of the MI-generated solitons can be estimated from
the MI oscillation period TMI = 1/νmax. Thus, the duration of the generated
solitons is 1/(0.75 THz) ≈ 1.3 ps and 1/(2.5 THz) ≈ 0.4 ps, in the d/Λ =
0.65 and the d/Λ = 0.378 fibre, respectively. Since the red-shift rate for such
soliton durations is proportional to T−4

0 [Eq. (2.28)], even a small decrease
in pulse width could lead to a significant increase in red-shift rate.

To clarify that energy transfer during soliton collisions is necessary for
the large observed red-shift, and that the resulting spectrum can not be
explained by MI and SSFS alone, the following analysis is performed. The
most red-shifted soliton in Fig. 5.5 has shifted to 1161 nm at z = 74 m.
This corresponds to a shift of Δν0 = −23.5 THz from the input pump
over Δz = 74 m. An estimate for the red-shift using Eq. (2.28) gives
Δν0 ≈ −8

∣∣β̄2

∣∣TRΔz/(2π15T 4
0 ) ≈ −3 × 10−4 THz, where the soliton width

T0 was approximated by the pulse train period TMI = 1.3 ps. β2(λ) changes
only slightly from −4.38 × 10−26 s2/m at λ0 = 1064 nm to −6.14 × 10−26

s2/m at λ = 1161 nm; β2(λ) is therefore approximated by β2(λ0) = β̄2. If
there is no energy transfer during soliton collisions, the change in T0 during
red-shift can also be neglected. It is thus clear that the solitons generated
directly from MI are too temporally long to make a notable red-shift.

To support this conclusion further, Fig. 5.7 shows the red-shift rate
dν0/dz in the two regimes where Eqs. (2.28–2.29) are valid. The red-shift
rate has been scaled by −1/ |β2| for generality. The observed shift of −23.5
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Figure 5.7: Red-shift rate dν0/dz scaled by −1/ |β2| in the two regimes where
analytical expressions are available: T0 � 76 fs [Eq. (2.29)] (blue, solid) and
T0 � 76 fs [Eq. (2.28)] (green, dashed).

THz corresponds to a mean scaled red-shift rate of (−1/β̄2)Δν0/Δz ≈ 7.3×
1036 s−3. It is seen from Fig. 5.7 that the scaled red-shift rate for a soliton
width T0 ≈ 1 ps is four orders of magnitude smaller than the observed mean
red-shift rate. This shows that even though there is a T−4

0 dependence, it
is not enough for the MI-generated soliton width to change ‘slightly’, if
the soliton is to make the observed red-shift. The soliton width has to be
decreased by an order of magnitude, as seen from Fig. 5.7. This is achieved
through the energy transfer during soliton collisions.

It is noted that one can also see soliton formation from MI followed by
the emergence of a few quickly red-shifting high-power solitons in the sim-
ulations performed in Refs. [111, 112]. Estimates of the red-shift rate for
the parameters used in those papers indicate that solitons formed directly
from MI could not explain the observed red-shift; nor did the short temporal
width of the observed high-power solitons correspond to the MI-oscillation
period. It therefore seems that these solitons were also the result of energy
transfer during collisions. The authors of Refs. [111, 112] may have over-
looked this possibly because they did not consider in detail the formation
of the high-power solitons using, e.g., spectrograms.
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Figure 5.8: Illustration of a super-Gaussian pulse with width 2TsG = 15 ps
in a time domain of Tmax = 29.5 ps (top, case A), 2TsG = 15 ps and Tmax = 59
ps (middle, case B), and 2TsG = 30 ps and Tmax = 59 ps (bottom, case C).

5.3 Influence of numerical, pump laser, and fibre

parameters

5.3.1 Time window width

First, consider case A illustrated in the top of Fig. 5.8: a super-Gaussian
pulse width of 15 ps, and a time window of Tmax = 29.5 ps. 214 points
were used with a time resolution of Δt = 1.8 fs. This results in a frequency
window of 1/Δt ≈ 556 THz, and a frequency resolution of 1/Tmax ≈ 34 GHz
(see Appendix A.3). 10 simulations were performed with different seeds for
the random number generator used to simulate the phase noise. As shown
in Fig. 5.9 (left), all the resulting spectra have a peak at 1116 nm and a
dip at 1013 nm. These features both correspond very well with a frequency
shift from the pump by 13.2 THz, which is the peak frequency shift for
Raman gain [13]. Thus, Raman gain is the dominant physical mechanism
responsible for the resulting spectrum in this case.

Now case B is considered, illustrated in the middle of Fig. 5.8, by dou-
bling the width of the time window to 59 ps, but keeping the width of the
input super-Gaussian pulse the same as in case A. Since the time resolution
is kept constant, 215 points are now used. This means that the frequency
resolution is halved from 34 GHz to 17 GHz. Since the frequency resolution
is already high, it can be assumed that this has negligible effect on the re-
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Figure 5.9: Spectra calculated for 10 ensembles differing by the random
number seed for the phase noise. Λ = 1.72 µm, d/Λ = 0.65, and the fibre
length L = 80 m. The linewidth is 30 GHz, input super-Gaussian pulse width
2TsG = 15 ps. Left: 214 points used, Tmax = 29.5 ps, smoothed over 8 points.
Right: 215 points used, Tmax = 59 ps, smoothed over 16 points.

sults. As seen in Fig. 5.9 (right) the peak and the dip resulting from Raman
gain are now less prominent, indicating that less energy is transferred via
the Raman effect. Also, in 3 of the 10 simulations a red-shifting soliton is
seen with a centre wavelength larger than 1100 nm.

The difference in resulting spectra between cases A and B can be ex-
plained as follows [4]. The difference in β1 = 1/vg between the pump (1064
nm) and the Raman Stokes wave (1116.3 nm) was calculated to 4.0 ps/m
(for the d/Λ = 0.65 fibre). This means that pulse energy transferred from
the pump to the Raman Stokes wave will separate from the pump in the
time domain at a rate of 4.0 ps for each metre of propagation. The Raman
Stokes wave is thus spread out over the time window after just a few metres
of propagation. This can be seen in the bottom of Fig. 5.5. The transfer
of energy from the pump to the Raman Stokes wave requires a temporal
overlap. When the time window is increased from case A to case B, the Ra-
man Stokes wave is spread over a larger time domain, thus decreasing the
temporal overlap with the pump. The transfer of energy from the Raman
anti-Stokes wave to the pump, and from the pump to the Raman Stokes
wave therefore becomes less efficient for case B. Since less energy is removed
from the pump wavelength there remains more energy in the solitons un-
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dergoing collisions. There is therefore a greater probability of a high-energy
soliton being formed, with such a short temporal width that it red-shifts
far-away from the pump.

Note that a super-Gaussian input pulse with the same width was sim-
ulated in cases A and B, and yet the resulting spectra are very different.
This important result shows that the choice of time window width requires
careful consideration.

5.3.2 Pulse temporal width

To consider case C (bottom of Fig. 5.8) the same time window as in case B
is used, but now the width of the super-Gaussian input pulse is doubled to
2TsG = 30 ps. The ratio of super-Gaussian pulse width and time window
width, 2TsG/Tmax, is now the same as in case A. From the physical explana-
tion above, the Raman energy transfer from the pump to the Raman Stokes
wave should now be as effective as in case A. This is because the tempo-
ral overlap between the Raman Stokes wave and the pump is the same in
both cases A and C, if it is assumed that the Raman Stokes wave is quickly
almost uniformly spread over the entire time window. Indeed, as seen in
Fig. 5.10 (left), the Raman anti-Stokes dip and the Raman Stokes peak have
practically the same power spectral density as for case A [Fig. 5.9 (left)].
It is also seen in Fig. 5.5 how the Raman Stokes wave is uniformly spread
across the time window. In case A the Raman energy transfer from the
pump was so severe that no red-shifting solitons were observed. However,
the doubling of the super-Gaussian input pulse width, compared to case A,
means that a larger number of colliding solitons will be formed from MI.
This should result in a greater probability for the formation of a quickly
red-shifting soliton. As expected, it is seen in Fig. 5.10 (left) that in 4 out
of the 10 ensembles a soliton was observed to red-shift beyond 1100 nm.

5.3.3 Influence of pump spectral linewidth

Again the computational parameters for case C are used (2TsG = 30
ps, Tmax = 59 ps, 215 points) but a FWHM power spectral linewidth of
ΔνFWHM = 265 GHz is simulated. The resulting spectra are seen in
Fig. 5.10 (right).
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Figure 5.10: Spectra calculated for 10 ensembles differing by the random
number seed for the phase noise generation. All spectra are for Λ = 1.72 µm,
d/Λ = 0.65, and a fibre length of 80 m. 215 points were used, 2TsG = 30
ps, Tmax = 59 ps. Left: Spectral linewidth ΔνFWHM = 30 GHz. Right:
ΔνFWHM = 265 GHz. Smoothed over 16 points. The thin black line indicates
the input spectrum for one of the simulations.

The only simulation difference between the left and the right plots in
Fig. 5.10 is the spectral linewidth of the quasi-CW input. None of the simu-
lations with 265 GHz linewidth show distinct red-shifting solitons, whereas
the simulations with 30 GHz linewidth show a red-shifting soliton in 4 out
of 10 simulations.

Two possible explanations for this difference have been suggested [4]. (1)
The larger pump linewidth leads to a larger spread in centre frequencies of
solitons as they form from the pump. Since the energy transfer between two
colliding solitons decreases with increasing separation in carrier frequency
[122], this leads to less overall energy transfer during soliton collisions. This
could then hinder the buildup of a quickly red-shifting soliton. (2) As the
linewidth of the Lorentzian power spectrum is increased, the pump power
spectral density S(λ = 1064 nm) is decreased, see Fig. 5.11 (left). At the
same time, there is more spectral power S(λ = 1116 nm) available at the
Raman Stokes wavelength. The reduction in power spectral density at the
pump wavelength could also hinder the buildup of a quickly red-shifting
soliton. Figure 5.11 (right) shows the power within a bandwidth of ∼ 4 nm
centred at the pump wavelength and the Raman Stokes wavelength, respec-
tively, during propagation along the fibre. It is seen that for a linewidth
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Figure 5.11: Left: Lorentzian shaped power spectrum for 30 GHz (solid,
blue) and 265 GHz linewidth (dashed, green). Right: Power evolution along
the fibre at the pump wavelength and the Raman Stokes wavelength of 1116
nm. One simulation for a linewidth of 30 GHz (solid, blue) and one simulation
for a 265 GHz linewidth (dashed, green).

of 265 GHz there is slightly less power at the pump wavelength, and sig-
nificantly more power at the Raman Stokes wavelength, compared to the
simulation with a linewidth of 30 GHz.

The relative importance of these two mechanisms in hindering the
buildup of a quickly red-shifting soliton has not yet been determined [4].

5.3.4 Influence of fibre dispersion profile

Now consider the fibre with the structural parameters Λ = 1.72 µm and
d/Λ = 0.378. This fibre has zero-dispersion wavelengths (ZDWs) at ∼ 1025
and 1281 nm, as seen from Fig. 5.2. It is also seen that the dispersion at
the pump wavelength is ∼ 20 times smaller for this fibre, compared to the
fibre with d/Λ = 0.65. The effective area Aeff is ∼ 2 times larger, and using
Eq. (5.11) this results in an MI maximum gain frequency of νmax = 2.5 THz,
as was also indicated in Fig. 5.6 (left). This means that approximately 3
times more solitons should be formed in this fibre than in the fibre with
d/Λ = 0.65. This is also what has been observed in spectrograms. The
larger number of solitons leads to a larger number of soliton collisions which
in turn increases the probability of the creation of a quickly red-shifting
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Figure 5.12: Calculated spectra at z = 64 m for the Λ = 1.72 µm, d/Λ =
0.378 fibre, super-Gaussian input pulse width 2TsG = 30 ps, time window
Tmax = 59 ps, 215 points. Left: ΔνFWHM = 30 GHz. Right: ΔνFWHM =
265 GHz linewidth. 10 ensembles shown in both cases. The thin black line
indicates the input spectrum for one of the ensembles.

soliton. Furthermore, the solitons are not only more abundant, but also
have a shorter temporal width giving them a larger red-shift rate (Fig. 5.7).
The resulting spectra are seen in Fig. 5.12.

It is seen that the larger number of red-shifting solitons results in a
relatively smooth spectral broadening on the red side of the pump. The
spectrum has achieved the large broadening at a shorter fibre distance (z =
64 m) than for the d/Λ = 0.65 µm fibre. The generation of dispersive waves
in the normal dispersion region [1, 56] is also observed at ∼ 857 nm and
∼ 1376 nm.

The formation of many solitons due to the lower dispersion also means
that the input linewidth is less critical than for the d/Λ = 0.65 fibre. As is
seen in Fig. 5.12, the simulations with 30 GHz and 265 GHz linewidth show
much more resemblance to each other than the corresponding simulations
for the d/Λ = 0.65 fibre (Fig. 5.10).

5.4 Comparison with experiments

The simulations in Figs. 5.9 (right) and 5.10 (left) showed a quickly red-
shifting soliton in only some of the simulations. The solitons also did not
undergo the same amount of red-shift. For example, one simulation in
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Fig. 5.10 (left) resulted in a soliton at ∼ 1170 nm and another simulation
had a soliton at ∼ 1270 nm. It is shown in Fig. 5.13 how averaging over
the ensembles smooths the peaks from individual solitons. Experimental
spectra were presented for similar pumping conditions in Refs. [106, 107].
The experimental spectra showed a large pump residual at 1064 nm, a
Raman Stokes peak at 1116 nm about 11 dB below the pump residual, and
a relatively flat continuum spanning from ∼ 1150 to ∼ 1350 nm about 14
dB below the pump residual. This is compared with the ensemble average
in Fig. 5.13 (right), corresponding to case C, because this should be a better
approximation to a real CW input than case A or B. In the simulations the
pump residual and Raman Stokes peak are almost at the same spectral
power level. This difference between the experiments and the simulations
could be caused by the fact that the simulations assume a polarised input
pump and only consider propagation in one polarisation axis, whereas the
experiments were done with a non-polarised pump laser. Instead of a flat
continuum from 1150 nm to 1350 nm the simulations show three distinct
peaks in the same wavelength region. This occurs because there is only
averaged over 10 ensembles in the work presented here; it is known that
the red-shift of each soliton is determined by the random initial conditions,
so increasing the number of averaged ensembles would smooth the soliton
spectra into a continuum. Ideally, for comparison with the measurement
of an optical spectrum analyser with 1 ms integration time, one would
need to average over ∼ 107 ensembles, if each ensemble corresponds to a
quasi-CW pulse of 30 ps duration. In practice, averaging over as few as
100 ensembles is found to give reasonable agreement with experimental
measurements [111, 112].

5.5 Summary and discussion of chapter 5

In recent work it was believed that solitons formed directly from MI could
red-shift far away from the CW pump [111, 112]. It was shown here that the
solitons require a shorter temporal width to make a significant red-shift, at
least in the cases investigated here and in Refs. [111, 112], and that this can
be achieved by energy transfer during soliton collisions [4].

It was shown how the time window and pulse width used in the cal-
culations can affect the resulting spectrum and must be chosen carefully.
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Figure 5.13: Left: Ensemble average for the same parameters as in Fig. 5.9
(right). Right: Ensemble average for the same parameters as in Fig. 5.10
(left). The averaged input spectrum is indicated as a thin black line.

Both should be chosen as large as computationally practical, but the time
window should not be much larger than the pulse width, since this can lead
to an underestimation of the Raman gain.

It was also demonstrated that increasing the spectral linewidth of the
CW pump laser can hinder the formation of quickly red-shifting solitons.
This indicates that narrow linewidth pump lasers should be selected for
generating a broader supercontinuum. The number of solitons formed from
a quasi-CW pulse and their red-shift rate can be increased by choosing a fibre
with lower dispersion at the pump wavelength. This reduces the required
fibre length and allows the use of a pump laser with broader linewidth while
still obtaining quickly red-shifting solitons.

From the standard textbook theory of modelling pulse propagation
(e.g. Ref. [13]) one could be led to assume that higher-order perturbations,
such as the delayed Raman response, can be neglected from the propagation
Eq. (2.2) if long input pulses are used. However, as shown in this chapter,
even when pumping with a quasi-CW pulse, MI can cause the pulse to break
up into solitons so short that the delayed Raman response can no longer
be neglected. Even if an MI-generated soliton is initially temporally long, it
can become much shorter during collisions with other solitons. Neglecting
the delayed Raman response would also underestimate the energy trans-
fer between solitons, since the Raman effect is expected to be the main
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perturbation causing the energy transfer [124, 126].



Chapter 6

Conclusion

6.1 Summary

Supercontinuum generation (SCG) was investigated in three pumping
regimes: femtosecond, picosecond, and continuous-wave (CW) or quasi-CW

pumping. In each regime it was demonstrated through numerical modelling
how changing the structural parameters of a photonic crystal fibre (PCF),
significantly affects the supercontinuum (SC) spectrum.

For femtosecond pumping it was found that self-phase modulation (SPM)
dominates the spectral broadening during the first few millimetres of prop-
agation. It was argued that four-wave mixing (FWM) cannot be expected
to play a role, because the condition of group-velocity matching required
for such short pulses is not fulfilled. Furthermore, SPM alone was shown
to be able to provide the observed spectral broadening. For longer fibre
lengths, solitons are formed, which red-shift due to soliton self-frequency
shift (SSFS). The extent of soliton red-shift is limited by the higher zero-
dispersion wavelength (ZDW), as dispersive waves are amplified in the nor-
mal dispersion region (NDR) above the ZDW, when the soliton spectrum has
shifted to the vicinity of the higher ZDW. The observation of an apparent
bright-bright soliton pair was also described. One part of the soliton pair
was in the anomalous dispersion region (ADR), while the other part was in
the NDR. To the best of the author’s knowledge, this was the first time this
phenomenon has been observed.

In the low-average power, picosecond pumping investigation of this work,



92 Conclusion

FWM was found to be the dominant mechanism for spectral broadening. The
FWM phase match condition was highly modified by changing the dispersion
profile slightly. It was shown that increasing the core size and /or wall
thickness of a cobweb PCF modified the dispersion so that the Stokes and
anti-Stokes wavelengths shifted further away from the pump wavelength. As
long as the dispersion was not made normal at the pump wavelength, the
SC spectrum was relatively flat and smooth from the anti-Stokes wavelength
to the Stokes wavelength. However, if the core size and/or wall thickness
was increased so much that the fibre became normally dispersive at the
pump wavelength, the resulting spectrum was shown to contain spectral dips
between the pump and the FWM generated peaks. It was also analytically
clarified that the Raman effect acts to reduce the FWM gain, and the Stokes
and anti-Stokes shift from the pump.

A phase noise model was used to model a CW pump and the influence
of the pump spectral linewidth. Recent work explained CW pumped SCG

as caused by soliton formation from modulation instability (MI), followed
by a red-shift of the solitons. This work showed that, at least for the cases
here and in two of the references, the solitons formed from MI are too tem-
porally long to undergo any significant red-shift. Instead, the solitons were
found to first exchange energy during collisions, before solitons were formed
with sufficiently short temporal width to make a significant red-shift. This
showed that higher-order nonlinear effects, such as the Raman delayed re-
sponse and self-steepening, cannot be neglected even when pumping with
long pulses, except for short fibre lengths. The influence of the time win-
dow width on numerical modelling of CW pumping was investigated, and it
was found that the time window width determines the efficiency of energy
transfer to the Raman Stokes wavelength. The number of solitons formed
from MI could be increased by choosing a fibre with less anomalous disper-
sion at the pump wavelength; this also reduced the temporal width of the
solitons, thereby increasing the soliton red-shift rate. Finally, it was shown
that increasing the spectral linewidth of the CW pump (without increasing
the average power) can hinder the formation of red-shifting solitons, and
thereby decrease the resulting spectral width.
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6.2 Discussion of implications for OCT-sources

SC sources pumped with solid-state femtosecond lasers have provided the
broadest spectra for optical coherence tomography (OCT), cf. Fig. 1.3 [27].
If a femtosecond laser is available with a centre wavelength at 800 nm, and
one desires an SC centre wavelength at 1300 nm, the present work clarifies
that the higher ZDW of the PCF must be located sufficiently above the
pump. Otherwise, the red-shift of solitons will be halted as the solitons
reach the higher ZDW. To increase the nonlinearity (with the intention of
lowering the required pump power) of a triangular structured PCF one can
reduce the pitch Λ, as this decreases the core size. However, this also shifts
the ZDWs to shorter wavelengths [19]. The condition of placing the higher
ZDW far above the pump therefore limits the nonlinearity of the PCF, and
thereby also how much the required pump power can be reduced, at least for
triangular structured PCFs with silica cores and the broadening mechanisms
considered here.

It should be emphasized that the present investigation has focused on
dispersion engineering; additional spectral shaping can be achieved through
changing the pulse parameters, such as temporal width or peak power [55].

Aguirre et al. recently pumped 85 fs pulses at 1064 nm into a PCF with
two closely lying ZDWs to generate a double peak spectrum at 800 nm
and 1300 nm, and used this for OCT imaging in both wavelength regions
[74]. The spectral broadening mechanisms can be assumed similar to those
described in Chapter 3. It was demonstrated clearly in Section 3.4 how the
spectral width and location of the two peaks can be controlled by tapering
the PCF. Referring to the work of Hilligsøe et al. [73], Frosz et al. [1],
and Falk et al. [2], the potential use of such dispersion engineering for OCT

applications was acknowledged by Aguirre et al. [74]:

(. . . ) it appears that generation of smoother continuum will be
realizable with further optimization of such fibers. (. . . ) The
paradigm of using theoretical analysis and numerical simulation
to custom design photonic crystal fibers that achieve a desired
spectral distribution will be extremely powerful for applications
such as OCT that are critically dependent on the precise spectral
characteristics.
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An important issue with solid-state femtosecond (� 10 fs) laser pumped
SCG for OCT is the relatively high price (∼ 160,000 US$), size and complex-
ity of the pump laser. Present lasers are termed “compact”, e.g. 90 cm ×
45 cm, due to comparison with earlier femtosecond lasers, but this is still
impractical for a portable OCT system. Therefore, solid-state femtosecond
pumped SC sources are currently unsuitable for clinical routine diagnos-
tics, but can be used for medical research programs where state-of-the-art
resolution is required.

Picosecond pumped SC sources have been demonstrated for OCT, but
the pulses were only 1.7 ps long and compressed to ∼ 100 fs before being
coupled into a highly nonlinear fibre [127]. The broadening mechanisms
were presumably similar to those described in Chapter 3. The pump laser
was a compact and mechanically stable fibre laser, which could therefore be
suitable for a clinical OCT system.

Using pump lasers with longer pulses (� 10 ps) could enable the spectral
broadening to be dominated by FWM, as described in Chapter 4. The theory
described there could then be used to control the spectral width and flatness
through dispersion engineering. However, this approach has a disadvantage
for OCT. FWM-dominated broadening results in a spectrum centred on the
pump wavelength, so a pump laser at 1300 nm is required for OCT in this
wavelength region. Since there is typically a large pump residual in the
spectrum, it must be reduced by filtering to increase the full width at half-
maximum (FWHM) bandwidth. It can be difficult to only reduce the pump
residual without affecting the shape of the spectrum. Thus, the usefulness
of FWM-dominated broadening for OCT depends on the ability to perform
this filtering without degrading the spectral flatness.

A CW fibre laser has numerous practical advantages over a solid-state
femtosecond laser: it is compact, mechanically stable, and can be spliced
directly to the PCF. With a price of ∼ 6,000 US$, CW pumped SC sources
seem ideal for clinical OCT applications. The feasibility for use in OCT has
already been demonstrated by Hsiung et al. [107], although the authors state
that excess noise is relatively high. Future work could investigate how the
noise can be reduced and how to improve the spectral bandwidth further.
The present work indicates that the broadest and flattest SC is obtained
using a narrow linewidth pump laser, and a PCF with small anomalous dis-
persion at the pump wavelength. As with femtosecond pumping, one must
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also ensure that the higher ZDW is sufficiently above the pump wavelength.

6.3 Outlook

SCG in PCFs can be expected to provide even broader and smoother spectra
in the future, as the development in fibre lasers leads to increasingly larger
pump power. Ultimately, the spectral width can be expected to be limited
by confinement losses and material absorption in the PCF. The increase
in pump power will present difficulties to the numerical modelling, since
the computation time will increase along with the pump power. This could
lead to a renewed interest in the split-step Fourier method and how to
optimize it. The trend in scientific computing towards relying more on
parallel computing could become inevitable for future modelling of SCG.

It was demonstrated in Chapter 4 how the spectral width and flatness
can be modified through dispersion engineering by changing, e.g., the core
size of a PCF. Since the core size is determined during production, it is
not possible to later fine tune the spectrum by adjusting the core size.
However, it has been both theoretically and experimentally shown for highly
dispersive PCFs how the dispersion varies with temperature [128]. Thus, it
should in principle be possible to fine tune the SC spectrum by temperature
control of the PCF.

As a final example of future prospects in SCG, consider that the sil-
ica core in typical index-guiding PCFs has a relatively low nonlinearity. A
hollow-core PCF utilizing the photonic band gap effect, on the other hand,
can have its core filled with a highly nonlinear medium. This was recently
investigated theoretically for the highly nonlinear liquids carbon disulfide
and nitrobenzene [129]. The core can also be filled with liquid crystals [130].
Liquid crystals have the exciting advantage that their optical properties can
be tuned both by applying an external electric field and/or controlling the
temperature. Calculations of the chromatic dispersion at different tempera-
tures were very recently presented and showed that the ZDW could be shifted
∼ 10 nm by increasing the temperature from 25◦C to 50◦C [131]. Liquid
crystal-filled cores could therefore possibly also be used for temperature
tunable SCG.
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Appendix A

Some useful formulas

A.1 Pulse parameters

Gaussian pulse

A(T ) =
√

P0 exp
(
− T 2

2T 2
0

)
, (A.1)

with pulse energy E given by

E =
∫ ∞

−∞
|A(T )|2 dT =

√
πP0T0 ≈ 1.06P0TFWHM. (A.2)

T0 is the half-width at 1/e-power, related to the power FWHM by

TFWHM = 2
√

ln 2T0 ≈ 1.665T0. (A.3)

The Fourier transform of a Gaussian pulse is also a Gaussian with a
FWHM power spectral width of

ΔνFWHM =
2 ln 2

πTFWHM
≈ 0.44

TFWHM
, (A.4)

ΔλFWHM ≈λ2
0

c
ΔνFWHM ≈ 0.44

λ2
0

cTFWHM
. (A.5)

The average power Pav is

Pav = Efrep =
√

πP0T0frep ≈ 1.06P0TFWHMfrep, (A.6)

where frep is the repetition rate.
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Hyperbolic-secant pulse

A(T ) =
√

P0sech
(

T

T0

)
. (A.7)

TFWHM = 2 ln
(
1 +

√
2
)

T0 ≈ 1.763T0. (A.8)

Pav = 2P0T0frep ≈ 1.13P0TFWHMfrep. (A.9)

A.2 Scaling of the electric field

The intensity of an electromagnetic wave E(r, t) = E0(r, t) exp[i(β0z−ω0t)]
is given by [132]

I(r, t) =
n

2

√
ε0

μ0
|E0(r, t)|2 , (A.10)

where μ0 is the vacuum permeability. From Eq. (2.1) and the scaling relation

EA =
√

1
2ε0cnE one has:

|E0(r, t)|2 =
2

ε0cn
|F (x, y)A(z, t)|2 =

2
ε0cn

|F (x, y)|2 |A(z, t)|2 . (A.11)

The optical power is then found by integrating over the intensity in the xy
plane:

P (z, t) =
∫∫

I(r, t)dxdy

=
n

2

√
ε0

μ0

2
ε0cn

|A(z, t)|2
∫∫

|F (x, y)|2 dxdy

= |A(z, t)|2
∫∫

|F (x, y)|2 dxdy. (A.12)

From this it is seen that if F (x, y) is normalized so that
∫∫ |F (x, y)|2 dxdy =

1, then the optical power can be calculated as

P (z, t) = |A(z, t)|2 . (A.13)
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A.3 Split-step Fourier method

The temporal resolution Δt, number of computational points Np, time win-
dow width Tmax, frequency window width B, and frequency resolution Δν
are related by (see any standard textbook on discrete Fourier transforms,
e.g. Ref. [65])

Tmax = (Np − 1) Δt, (A.14)

Δν =
1

NpΔt
≈ 1

Tmax
, (A.15)

B = (Np − 1) Δν ≈ 1
Δt

. (A.16)

The minimum and maximum wavelengths in the calculated spectra are
determined by the centre wavelength λ0 of the simulation and the temporal
resolution Δt:

λmin =
λ0

1 + λ0
2cΔt

, λmax =
λ0

1 − λ0
2cΔt

. (A.17)

The power spectral density S(ω) is defined as [118]

S(ω) = lim
T→∞

1
T

∣∣∣∣∣
∫ T/2

−T/2
A(t) exp [i (ω − ω0) t] dt

∣∣∣∣∣
2

. (A.18)

Since the computation of the discrete Fourier transform limits T to the
width Tmax of the time window,

S(ω) =
1

Tmax

∣∣∣Ã(ω)
∣∣∣2 , (A.19)

where Ã(ω) is the discrete Fourier transform of the time window.
If Ã(ω) is scaled properly so that

E =
∫ Tmax

0
|A(t)|2 dt =

∫ ωmax

ωmin

∣∣∣Ã(ω)
∣∣∣2 dω, (A.20)
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where E is the pulse energy within the time window, then it can be easily
seen that Eq. (A.19) should be replaced by

S(ω) = frep

∣∣∣Ã(ω)
∣∣∣2 , (A.21)

to obtain the scaling

∫ ωmax

ωmin

S(ω)dω = Pav = frepE, (A.22)

where frep is the pulse repetition frequency.
When plotting the power spectral density on a wavelength scale, S(λ),

it must be assured that integrating over a wavelength region [λ1;λ2] gives
the same power as integrating over the corresponding frequency region
[c/λ2; c/λ1]:

Pλ1,λ2 =
∫ λ2

λ1

S(λ)dλ =
∫ c/λ1

c/λ2

S(ν)dν. (A.23)

From

S(λ)Δλ = S(ν)[−Δν] ⇒ S(λ) = −S(ν)
Δν

Δλ
, (A.24)

and using
Δν

Δλ
→ dν

dλ
= − c

λ2
, (A.25)

one obtains the transformation relation

S(λ) =
c

λ2
S(ν) =

c

λ2
frep

∣∣∣Ã(ν)
∣∣∣2 . (A.26)

When modelling a CW or quasi-CW input with periodicity Tmax,
Eq. (A.21) must be replaced by Eq. (A.19), and Eq. (A.26) replaced by

S(λ) =
c

λ2Tmax

∣∣∣Ã(ν)
∣∣∣2 . (A.27)
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A.4 One photon per mode

As described in Subsection 5.1.1, the one photon per mode approach consists
in injecting the energy equivalent to one photon in each frequency bin ([116]
and Section 8.1.2 in Ref. [13]) with a random spectral phase [61]. The power
of the one photon per mode field is then [13, 116]

Poppm =
∫ νmax

νmin

hνdν. (A.28)

Since the power spectral density Soppm(ν) of the same field is related to the
power by

Poppm =
∫ νmax

νmin

Soppm(ν)dν, (A.29)

one has Soppm(ν) = hν. Using Eq. (A.19),

∣∣∣Ãoppm(ν)
∣∣∣2 = Tmaxhν, (A.30)

so Ãoppm(νm) is calculated for each frequency bin νm using

Ãoppm(νm) =
√

Tmaxhνm × exp[iφ(νm)], (A.31)

where φ(νm) is the random spectral phase, sampled stochastically as
white noise with uniform probability distribution over the interval [0; 2π].
Ãoppm(νm) is then inverse Fourier transformed to obtain Aoppm(tm) which
is added to the input field.



102 Some useful formulas



List of acronyms

ADR anomalous dispersion region

CARS coherent anti-Raman Stokes

CW continuous-wave

EM electromagnetic

FFT fast Fourier transform

FFTW fastest Fourier transform in the West

FWHM full width at half-maximum

FWM four-wave mixing, see p. 15 for theory

GVD group-velocity dispersion

MI modulation instability, see p. 15 for theory

MPI message passing interface

NLSE nonlinear Schrödinger equation

NDR normal dispersion region

OCT optical coherence tomography

OPL Optics and Plasma Research Department

PCF photonic crystal fibre
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RIN relative intensity noise

SC supercontinuum

SCG supercontinuum generation

SPM self-phase modulation

SSFS soliton self-frequency shift

TOD third-order dispersion

X-FROG cross-correlation frequency-resolved optical gating

XPM cross-phase modulation

ZDW zero-dispersion wavelength
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Only the abstracts of the journal publications within the scope of this the-
sis is given here. The complete list of publications published during the
Ph. D. project can be seen on p. xv.

[1] M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-
dispersion wavelength in generation of supercontinua and bright-
bright soliton-pairs across the zero-dispersion wavelength,” Opt. Ex-
press 13(16), 6181–6192 (2005).

Supercontinuum generation with femtosecond pulses in photonic crys-
tal fibers with two zero-dispersion wavelengths (ZDWs) is investigated
numerically. The role of the higher ZDW is examined for 5 fiber de-
signs with a nearly constant lower ZDW. It is found that the result-
ing spectrum is mainly determined by self-phase modulation in the
first few mm of fiber, followed by soliton self-frequency shift and am-
plification of dispersive waves. It is demonstrated how femtosecond
soliton pulses can be generated with any desired center wavelength
in the 1020–1200 nm range by adjusting the fiber length. Further,
the generation of a bright-bright soliton-pair from an initial single
red-shifted soliton is found. The soliton-pair has one color in the
anomalous dispersion region and the other color in the normal disper-
sion region, which has not previously been described for bright-bright
soliton-pairs.

[2] P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in
a photonic crystal fiber with two zero-dispersion wavelengths tapered
to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–
7540 (2005).
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We numerically study supercontinuum generation in photonic crystal
fibers with two zero-dispersion wavelengths, weakly tapered to have
normal dispersion at all wavelengths after a certain distance. We
pump with 15 fs pulses with milliwatt average power and show that
two distinct smooth spectral parts are generated, with improved sta-
bility due to the normal dispersion. We characterize the two spectral
parts and show how the 3 dB bandwidth, the center wavelength, and
the power of the two parts depend on the taper parameters and the
pump power.

[3] M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic
crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am.
B 23(8), 1692–1699 (2006).

Supercontinuum generation using picosecond pulses pumped into cob-
web photonic crystal fibers is investigated. Dispersion profiles are cal-
culated for several fiber designs and used to analytically investigate
the influence of the fiber structural parameters (core size and wall
thickness) on the location of the Stokes and anti-Stokes bands and gain
bandwidth. An analysis shows that the Raman effect is responsible for
reducing the four-wave mixing gain and a slight reduction in the cor-
responding frequency shift from the pump, when the frequency shift
is much larger than the Raman shift. Using numerical simulations we
find that four-wave mixing is the dominant physical mechanism for
the pumping scheme considered, and that there is a trade-off between
the spectral width and the spectral flatness of the supercontinuum.
The balance of this trade-off is determined by nanometer-scale design
of the fiber structural parameters. It is also shown that the relatively
high loss of the nonlinear fiber does not significantly affect the super-
continuum generation.

[4] M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Ra-
man gain regimes in continuous-wave pumped supercontinuum gener-
ation,” Opt. Express 14(20), 9391–9407 (2006).

We numerically investigate supercontinuum generation using
continuous-wave pumping. It is found that energy transfer during
collision of solitons plays an important role. The relative influence of
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Raman gain on spectral broadening is shown to depend on the width
of the calculation time window. Our results indicate that increasing
the spectral linewidth of the pump can decrease the supercontinuum
spectral width. Using a fiber with smaller dispersion at the pump
wavelength reduces the required fiber length by decreasing the tem-
poral width of the solitons formed from modulation instability. This
also reduces the sensitivity to the pump spectral linewidth.
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