1,554 research outputs found

    Economic Impact of Deer Breeding Operations in Texas

    Get PDF
    The deer breeding industry is a growing industry in the Texas economy, particularly the rural economy. Industry participants were surveyed to provide estimates of economic activity, which was then input into the IMPLAN model. The industry generates an estimated $652 million in economic activity, while supporting 7,335 jobs.Industrial Organization,

    Banding pattern indicative of echinococcosis in a commercial cysticercosis western blot

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>A commercial cysticercosis Western blot was evaluated for serological cross-reactivity of sera from patients with alveolar (AE) and cystic echinococcosis (CE).</p> <p>Methods</p> <p>A total of 161 sera were examined, including 31 sera from AE-patients, 11 sera from CE-patients, 9 sera from patients with other parasitic diseases and 109 sera from patients with unrelated medical conditions. All AE-and CE-sera were also examined by the echinococcosis Western blot.</p> <p>Results</p> <p>More sera from patients with AE than with CE showed cross-reactivity in the form of ladder-like patterns ("Mikado aspect") and untypical bands at 6-8 kDa (71% and 77.4% versus 27.3% and 45.5%, respectively). In contrast, triplets of bands in the area above 50 kDa and between 24 and 39-42 kDa were more frequent in CE than in AE sera. The fuzzy band at 50-55 kDa typical for cysticercosis was absent in all AE and CE sera.</p> <p>Conclusions</p> <p>Atypical banding patterns in the cysticercosis Western blot should raise the suspicion of a metacestode infection different from Taenia solium, i.e. Echinococcus multilocularis or E. granulosus, especially when the Mikado aspect and an altered 6-8 kDa band is visible in the absence of a fuzzy 50-55 kDa band.</p

    Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21

    Full text link
    Published in final edited form as: Brain Struct Funct. 2019 January ; 224(1): 351–362. doi:10.1007/s00429-018-1777-z.Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 µm) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer II. In the current method-oriented study, we aimed to determine the colocalization success rate between OCM and Nissl in other brain cortical areas with different laminar arrangements and cell packing density. We focused on two additional cortical areas: medial prefrontal, pre-genual Brodmann area (BA) 32 and lateral temporal BA 21. We present the data as colocalization matrices and as quantitative percentages. The overall average colocalization in OCM compared to Nissl was 67% for BA 32 (47% for Nissl colocalization) and 60% for BA 21 (52% for Nissl colocalization), but with a large variability across cases and layers. One source of variability and confounds could be ascribed to an obscuring effect from large and dense intracortical fiber bundles. Other technical challenges, including obstacles inherent to human brain tissue, are discussed. Despite limitations, OCM is a promising semi-high throughput tool for demonstrating detail at the neuronal level, and, with further development, has distinct potential for the automatic acquisition of large databases as are required for the human brain.Accepted manuscrip

    Performance-Related Specifications for Concrete Bridge Superstructures, Volume 3: Nonmetallic Reinforcement

    Get PDF
    In Volume 3 of the final report, research work conducted to investigate the behavior of fiber reinforced polymer (FRP) reinforcement is summarized. This study focused on the behavior of FRP reinforced concrete structures with an emphasis on bond and shear. For the bond investigation, three series of beam splice tests were performed on specimens reinforced with steel, glass FRP, and aramid FRP to determine the effect of the different types of reinforcement on bond, cracking, and deflections. The test results indicate that the use of FRP reinforcement leads to lower bond strengths and, therefore, require longer development lengths. The specimen crack widths and deflections were substantially larger for FRP specimens than steel specimens due to the significantly lower modulus of elasticity. Analysis of the test results resulted in recommendations for modifying the empirical development length equation of ACI 318- 99 design code for use with FRP reinforcement. For the shear investigation, two series of beam tests were conducted on specimens reinforced with steel, glass FRP, and aramid FRP to determine the effect of the different types of reinforcement on the concrete shear strength. All specimens did not contain transverse reinforcement. The test results indicate that the use of FRP reinforcement leads to lower concrete shear strengths than steel reinforcement for equal reinforcement cross-sectional areas (longitudinal reinforcement percentages). Analysis of the test results resulted in recommendations for the calculation of concrete shear strength. Based on the findings of this research, design and construction recommendations are provided that can be used for the design and construction of FRP reinforced bridge decks

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results

    Candidate screening for the recruitment of critical research and development workers - a report and preliminary results with evidence from experimental data from German high-tech firms

    Full text link
    The report focuses on résumé-based screening strategies for the recruitment of highly qualified research and development (R&D) workers (critical R&D workers) in high-tech firms. We investigate which kinds of professional background, job-related experience, motivations, specific skills, and previous inventive activity make a candidate attractive for firms specializing in clean technology or mechanical elements. The report is based on a combination of survey and experimental data collected from 194 HR decision makers in German high-tech firms and from 89 technology experts in the clean technology and mechanical elements fields. A mixed logit model is used to analyse hiring preferences because this model allows us to deal with repeated choices. We find that HR decision makers prefer candidates with technology-specific patenting experience, an engineering background, analytical thinking skills, and a strong desire to develop path-breaking technologies. Furthermore, no one-size-fits-all candidate exists that is equally preferred in both technology fields. HR decision makers in mechanical element firms prefer specialists to generalists, whereas those in clean technology attach special importance to a candidate’s orientation towards environmental concerns and sustainability

    The Environmental “Riskscape” and Social Inequality: Implications for Explaining Maternal and Child Health Disparities

    Get PDF
    BACKGROUND: Research indicates that the double jeopardy of exposure to environmental hazards combined with place-based stressors is associated with maternal and child health (MCH) disparities. OBJECTIVE AND DISCUSSION: Our aim is to present evidence that individual-level and place-based psychosocial stressors may compromise host resistance such that environmental pollutants would have adverse health effects at relatively lower doses, thus partially explaining MCH disparities, particularly poor birth outcomes. Allostatic load may be a physiologic mechanism behind the moderation of the toxic effect of environmental pollutants by social stressors. We propose a conceptual framework for holistic approaches to future MCH research that elucidates the interplay of psychosocial stressors and environmental hazards in order to better explain drivers of MCH disparities. CONCLUSION: Given the complexity of the link between environmental factors and MCH disparities, a holistic approach to future MCH research that seeks to untangle the double jeopardy of chronic stressors and environmental hazard exposures could help elucidate how the interplay of these factors shapes persistent racial and economic disparities in MCH

    Development of a Cost-Effective Concrete Bridge Deck Preservation Program: Volume 2—Final Results and Recommendations

    Get PDF
    The deterioration of bridge decks has been identified as a major problem in Indiana. The primary cause of this deterioration is salt water ingress from the application of deicing salts during the winter. Deicing chemicals placed on the road mix with water and enter the deck through cracks and the pore structure of the concrete. This results in corrosion of the reinforcing steel and scaling of the surface, which leads to a shortened bridge deck life and costly deck replacement. The objective of this study is to investigate potentially effective and economic bridge deck preservation methods to significantly extend the service life of bridge decks, and as a result, extend the life of bridge structures in the State of Indiana. The research is presented in two volumes. Volume 1 focuses on the development and implementation of the experimental program. A survey of State Departments of Transportation identified the types of bridge deck preservation programs that are currently in use, the methods that they have employed in the past, and the perceived level of success with these programs and methods. A literature review provided information regarding specific products that performed well, characteristics of broader chemical families and their best uses, and other variables that may influence the effectiveness of sealers. The results of the DOT survey and literature review were used to determine the materials and methods to be further investigated in the experimental study. Based on this background, a series of macrocell specimens were constructed, and a salt water exposure regimen was initiated to examine the effectiveness of deck/crack sealer materials and application methods that were identified. Volume 2 presents the results of this study which were developed through the analysis of the recorded electrical activity after 1600 days of exposure followed by autopsy of the specimens. A visual rating scheme was used to assess the specimens during autopsy and to demonstrate the correspondence between the observed severity of corrosion and the recorded electrical activity. In addition, a deck sealer was applied to specimens with preexisting corrosion to evaluate the sealer\u27s effectiveness in slowing the rate of corrosion. The deck sealer products were studied further by correlating both the sealer penetration depth and the chloride penetration profile with the products\u27 effectiveness in resisting corrosion activity. A preliminary field application of crack sealer to an existing bridge deck was completed to evaluate processes, equipment, and other required resources. Finally, recommendations are provided regarding product selection and application to enable cost effective implementation of a bridge deck sealing program across the State of Indiana

    Development of a Cost-Effective Concrete Bridge Deck Preservation Program: Volume 1—Development and Implementation of the Experimental Program

    Get PDF
    The deterioration of bridge decks has been identified as a major problem in Indiana. The primary cause of this deterioration is salt water ingress from the application of deicing salts during the winter. Deicing chemicals placed on the road mix with water and enter the deck through cracks and the pore structure of the concrete. This results in corrosion of the reinforcing steel and scaling of the surface, which leads to a shortened bridge deck life and costly deck replacement. The objective of this study is to investigate potentially effective and economic bridge deck preservation methods to significantly extend the service life of bridge decks, and as a result, extend the life of bridge structures in the State of Indiana. The research is presented in two volumes. Volume 1 focuses on the development and implementation of the experimental program. A survey of State Departments of Transportation identified the types of bridge deck preservation programs that are currently in use, the methods that they have employed in the past, and the perceived level of success with these programs and methods. A literature review provided information regarding specific products that performed well, characteristics of broader chemical families and their best uses, and other variables that may influence the effectiveness of sealers. The results of the DOT survey and literature review were used to determine the materials and methods to be further investigated in the experimental study. Based on this background, a series of macrocell specimens were constructed, and a salt water exposure regimen was initiated to examine the effectiveness of deck/crack sealer materials and application methods that were identified. Volume 2 presents the results of this study which were developed through the analysis of the recorded electrical activity after 1600 days of exposure followed by autopsy of the specimens. A visual rating scheme was used to assess the specimens during autopsy and to demonstrate the correspondence between the observed severity of corrosion and the recorded electrical activity. In addition, a deck sealer was applied to specimens with preexisting corrosion to evaluate the sealer\u27s effectiveness in slowing the rate of corrosion. The deck sealer products were studied further by correlating both the sealer penetration depth and the chloride penetration profile with the products\u27 effectiveness in resisting corrosion activity. A preliminary field application of crack sealer to an existing bridge deck was completed to evaluate processes, equipment, and other required resources. Finally, recommendations are provided regarding product selection and application to enable cost effective implementation of a bridge deck sealing program across the State of Indiana
    corecore