11 research outputs found

    Whole‐brain microscopy reveals distinct temporal and spatial efficacy of anti‐Aβ therapies

    Full text link
    Many efforts targeting amyloid-β (Aβ) plaques for the treatment of Alzheimer's Disease thus far have resulted in failures during clinical trials. Regional and temporal heterogeneity of efficacy and dependence on plaque maturity may have contributed to these disappointing outcomes. In this study, we mapped the regional and temporal specificity of various anti-Aβ treatments through high-resolution light-sheet imaging of electrophoretically cleared brains. We assessed the effect on amyloid plaque formation and growth in Thy1-APP/PS1 mice subjected to β-secretase inhibitors, polythiophenes, or anti-Aβ antibodies. Each treatment showed unique spatiotemporal Aβ clearance, with polythiophenes emerging as a potent anti-Aβ compound. Furthermore, aligning with a spatial-transcriptomic atlas revealed transcripts that correlate with the efficacy of each Aβ therapy. As observed in this study, there is a striking dependence of specific treatments on the location and maturity of Aβ plaques. This may also contribute to the clinical trial failures of Aβ-therapies, suggesting that combinatorial regimens may be significantly more effective in clearing amyloid deposition. Keywords: Alzheimer's disease; amyloid-beta; brain; light-sheet microscopy; tissue clearin

    CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo

    Get PDF
    Thus far the clinical benefits seen in breast cancer patients treated with drugs targeting the vascular endothelial growth factor (VEGF) pathway are only modest. Consequently, additional antiangiogenic approaches for treatment of breast cancer need to be investigated. Thrombospondin-2 (TSP-2) has been shown to inhibit tumor growth and angiogenesis with a greater potency than the related molecule TSP-1. The systemic effects of TSP-2 on tumor metastasis and the underlying molecular mechanisms of the antiangiogenic activity of TSP-2 have remained poorly understood. We generated a recombinant fusion protein consisting of the N-terminal region of TSP-2 and the IgG-Fc1 fragment (N-TSP2-Fc) and could demonstrate that the antiangiogenic activity of N-TSP2-Fc is dependent on the CD36 receptor. We found that N-TSP2-Fc inhibited VEGF-induced tube formation of human dermal microvascular endothelial cells (HDMEC) on matrigel in vitro and that concurrent incubation of anti-CD36 antibody with N-TSP2-Fc resulted in tube formation that was comparable to untreated control. N-TSP2-Fc potently induced apoptosis of HDMEC in vitro in a CD36-dependent manner. Moreover, we could demonstrate a CD36 receptor-mediated loss of mitochondrial membrane potential and activation of caspase-3 in HDMEC in vitro. Daily intraperitoneal injections of N-TSP2-Fc resulted in a significant inhibition of the growth of human MDA-MB-435 and MDA-MB-231 tumor cells grown in the mammary gland of immunodeficient nude mice and in reduced tumor vascularization. Finally, increased serum concentrations of N-TSP2-Fc significantly inhibited regional metastasis to lymph nodes and distant metastasis to lung as shown by quantitative real-time alu PCR. These results identify N-TSP2-Fc as a potent systemic inhibitor of tumor metastasis and provide strong evidence for an important role of the CD36 receptor in mediating the antiangiogenic activity of TSP-2

    Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study

    Get PDF
    Background: Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms. Methods: We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched for country. Findings: Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17-1·30], p=2·68 × 10-15; heterozygous model p=1·01 × 10-135), STX6 (rs3747957; OR 1·16 [1·10-1·22], p=9·74 × 10-9), and GAL3ST1 (rs2267161; OR 1·18 [1·12-1·25], p=8·60 × 10-10). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the major transcripts in disease-relevant brain regions. Interpretation: We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders. Funding: Medical Research Council and the UK National Institute of Health Research in part through the Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust

    Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish

    Full text link
    The aberrant activation of developmental processes triggers diverse cancer types. Chordoma is a rare, aggressive tumor arising from transformed notochord remnants. Several potentially oncogenic factors have been found to be deregulated in chordoma, yet causation remains uncertain. In particular, sustained expression of TBXT – encoding the notochord regulator protein brachyury – is hypothesized as a key driver of chordoma, yet experimental evidence is absent. Here, we employ a zebrafish chordoma model to identify the notochord-transforming potential of implicated genes in vivo. We find that Brachyury, including a form with augmented transcriptional activity, is insufficient to initiate notochord hyperplasia. In contrast, the chordoma-implicated receptor tyrosine kinases (RTKs) EGFR and Kdr/VEGFR2 are sufficient to transform notochord cells. Aberrant activation of RTK/Ras signaling attenuates processes required for notochord differentiation, including the unfolded protein response and endoplasmic reticulum stress pathways. Our results provide the first in vivo evidence against a tumor-initiating potential of Brachyury in the notochord, and imply activated RTK signaling as a possible initiating event in chordoma. Furthermore, our work points at modulating endoplasmic reticulum and protein stress pathways as possible therapeutic avenues against chordoma

    Inflammatory olfactory neuropathy in two patients with COVID-19

    Get PDF
    We report two cases of olfactory neuropathy diagnosed at autopsy in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. One patient experienced anosmia. Information about anosmia was not available in the other patient. Patient 1, a man aged 70 years, and patient 2, a man aged 79 years, both tested positive for SARS-CoV-2. Patient 1 was a renal transplant recipient with coronary artery disease and arterial hypertension. He developed progressive respiratory failure due to COVID-19 pneumonia and required mechanical ventilation. He was treated with hydroxychloroquine (total 1600 mg). Patient 2 was previously diagnosed with severe pulmonary hypertension and was admitted with fever, cough, and increasing dyspnoea as well as loss of taste and smell. He was also treated with hydroxychloroquine (total 1600 mg); however, he declined invasive treatment. Patient 1 died 8 days after hospital admission; patient 2 died 6 days after hospital admission
    corecore