9 research outputs found

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e′p)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,e′p)γ(e,e'p)\gamma to H(e,e′p)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Dynamical relativistic effects in quasielastic 1p-shell proton knockout from 16^{16}O

    No full text
    We have measured the cross section for quasielastic 1p-shell proton knockout in the 16O(e,e′p) reaction at ω=0.439GeV and Q2=0.8(GeV/c)2 for missing momentum Pmiss≤355MeV/c. We have extracted the response functions RL+TT, RT, RLT, and the left-right asymmetry, ALT, for the 1p1/2 and the 1p3/2 states. The data are well described by relativistic distorted wave impulse approximation calculations. At large Pmiss, the structure observed in ALT indicates the existence of dynamical relativistic effects. (APS

    Measurements of the deuteron elastic structure function A(Q2)A(Q^2) for 0.7≤Q2≤6.00.7\leq Q^2\leq 6.0 (GeV/c)2^2 at Jefferson Laboratory

    No full text
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamic

    Virtual compton scattering in the resonance region up to the deep inelastic region at backward angles and momentum transfer squared of Q2Q^2 = 1.0 GeV2GeV^2

    No full text
    PHASEInternational audienceWe have made the first measurements of the virtual Compton scattering process via the e p -> e p gamma exclusive reaction at Q**2 = 1 GeV**2 in the nucleon resonance region. The cross section is obtained at center of mass (CM) backward angle, theta_gamma_gamma*, in a range of total (gamma* p) CM energy W from the proton mass up to W = 1.91 GeV. The data show resonant structures in the first and second resonance regions, and are well reproduced at higher W by the Bethe-Heitler+Born cross section, including t-channel pi0-exchange. At high W, our data, together with existing real photon data, show a striking Q**2 independence. Our measurement of the ratio of H(e,e'p)gamma to H(e,e'p)pi0 cross sections is presented and compared to model predictions

    Measurement of the generalized polarizabilities of the proton in virtual compton scattering at Q2=0.92and1.76GeV2Q^2=0.92 and 1.76 GeV^2: II. Dispersion relation analysis

    No full text
    PHAS

    Measurement of the generalized polarizabilities of the proton in virtual compton scattering at Q2=0.92and1.76GeV2Q^2=0.92 and 1.76 GeV^2: I. Low energy expansion analysis

    No full text
    PHAS

    Basic instrumentation for Hall A at Jefferson Lab

    No full text
    The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro-and photo- induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2 x 10(-4). A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10(38) CM-2 s(- 1). The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium
    corecore