50 research outputs found

    TOT Approach in stress urinary incontinence (SUI) – outcome in obese female

    Get PDF
    BACKGROUND: Only limited data are available on the outcome of tension-free obturator tape (TOT) procedures in overweight and obese women. We would like to verify the objective and subjective outcomes of TOT in women with a higher body mass index (BMI). METHODS: We evaluated the records of 116 patients who had undergone TOT, stratifying by BMI into normal weight (n = 31), overweight (n = 56), and obese (n = 29) groups. We compared pre- and postoperative evaluations, including subjective and objective outcome of TOT, complications, and quality of life assessed by validated questionnaires (ICIQ-SF and KHQ). RESULTS: The median follow-up was 21 months. There were no significant differences between different groups in terms of objective cure rate and subjective success, quality of life scores and postoperative complications. CONCLUSIONS: Our data demonstrate that TOT procedure is safe and effective. BMI did not influence the outcome of TOT procedures at a median of 21 months after surgery and represents no contraindication for continence surgery. The success of the outcome of TOT procedure in females and the occurrence of complications are not negatively affected by obesity

    Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade <it>Milnesium tardigradum</it> were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress.</p> <p>Results</p> <p>In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration.</p> <p>Conclusions</p> <p>The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.</p

    Soluble urokinase plasminogen activator receptor levels are associated with severity of fibrosis in patients with primary sclerosing cholangitis

    Get PDF
    The soluble urokinase-type plasminogen activator receptor (suPAR) has evolved as a useful biomarker for different entities of chronic liver disease. However, its role in patients with primary sclerosing cholangitis (PSC) is obscure. We analyzed plasma levels of suPAR in 84 patients with PSC and compared them to 68 patients with inflammatory bowel disease (IBD) without PSC and to 40 healthy controls. Results are correlated with clinical records. suPAR concentrations were elevated in patients with PSC compared to patients with IBD only and to healthy controls ((p) (&)lt; 0.001). Elevated suPAR levels were associated with the presence of liver cirrhosis ((p) (&)lt; 0.001) and signs of portal hypertension ((p) (&)lt; 0.001). suPAR revealed a high accuracy for the discrimination of the presence of liver cirrhosis comparable to previously validated noninvasive fibrosis markers (area under the curve (AUC) 0.802 (95%CI: 0.702-0.902)). Further, we demonstrated that suPAR levels may indicate the presence of acute cholangitis episodes ((p) (&)lt; 0.001). Finally, despite the high proportion of PSC patients with IBD, presence of IBD and its disease activity did not influence circulating suPAR levels. suPAR represents a previously unrecognized biomarker for diagnosis and liver cirrhosis detection in patients with PSC. However, it does not appear to be confounded by intestinal inflammation in the context of IBD

    Methylation levels of a novel genetic element, EgNB3 as a candidate biomarker associated with the embryogenic competency of oil palm

    Get PDF
    The association between DNA methylation status and embryogenic competency in oil palm tissue culture was examined through Representational Difference Analysis (RDA) approach, using methylation-sensitive restriction endonucleases. "Difference Products" (DPs) of RDA derived from palms of similar genetic backgrounds but exhibiting different embryogenesis rates during the regeneration process were isolated. The DPs were sequenced using a pyrosequencing platform. To our knowledge, this is the first study profiling partial HpaII methylation sites in oil palm young leaf tissues which are potentially associated with embryogenic amenability through a genomic subtractive approach. Quantitative real-time PCR analysis demonstrated that the methylation status of a novel fragment, EgNB3, was higher in highly embryogenic leaf explants compared to low embryogenesis rate materials. These differences are likely to be contributed by the 5′-mCCGG-3′ and/or 5′-mCmCGG-3′ methylation patterns. Our data suggest that the differentially methylated site in EgNB3 has potential as a molecular biomarker for the screening of oil palm leaf explants for their embryogenic potentials

    Hepatobiliary long-term consequences of COVID-19: dramatically increased rate of secondary sclerosing cholangitis in critically ill COVID-19 patients

    Get PDF
    BACKGROUND: Increasing evidence suggests that secondary sclerosing cholangitis (SSC), which can lead to cirrhosis or liver failure, may be a hepatobiliary long-term complication of COVID-19. The aim of this study was to estimate the frequency and outcome of this COVID-19 sequela and to identify possible risk factors. METHODS: This observational study, conducted at University Hospital Charité Berlin and Unfallkrankenhaus Berlin, Germany, involved hospitalized patients with COVID-19 pneumonia, including 1082 ventilated COVID-19 patients. We compared COVID-19 patients who developed SSC with a COVID-19 control group by univariate and multivariate analyses. RESULTS: SSC occurrence after COVID-19 was observed exclusively in critically ill patients with invasive ventilation, albeit with extreme clustering among them. One in every 43 invasively ventilated COVID-19 patients developed this complication. Risk factors preceding the development of secondary sclerosing cholangitis in critically ill COVID-19 patients (SSC-CIP) were signs of systemic reduced blood oxygen supply (e.g., low PaO(2)/FiO(2), ischemic organ infarctions), multi-organ failure (high SOFA score) at admission, high fibrinogen levels and intravenous ketamine use. Multivariate analysis confirmed fibrinogen and increased plasma lactate dehydrogenase as independent risk factors associated with cholangiopathy onset. The 1-year transplant-free survival rate of COVID-19-associated SSC-CIP was 40%. CONCLUSIONS: COVID-19 causes SSC-CIP in a substantial proportion of critically ill patients. SSC-CIP most likely develops due to severe tissue hypoxia and fibrinogen-associated circulatory disturbances. A significant increase of patients with SSC-CIP is to be expected in the post-COVID era

    Advancing microbiome research with machine learning : key findings from the ML4Microbiome COST action

    Get PDF
    The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices

    LCMS Analysis of Biochemical Composition in Different Kenyan Coffee Classifications

    Get PDF
    Kenyan coffee is classified by defects after grading by the ‘Devonshire method.’ The method involves classification of the coffee beans into different classes based on the raw and roasted coffees and cup quality, with class one being the best and ten the poorest. In this study, the relationship between classification of the coffee and the content of sucrose, trigonelline, caffeine and chlorogenic acids was determined by simultaneous LC-MS analysis. By using the sensory variables the class 3 coffee portrayed the best quality, followed by class 4 and 5 which were placed further distinctively from the other classes (6, 7, 8 and 9). The class 3 coffee had a high percent of non-defective beans with 94.31% and class 9 had a high defect count at 79.53% hence the defective beans increased with decrease in coffee class. The caffeine concentration in green coffee for class 3 coffee was significantly different from the rest of the coffees at 1.23 ± 0.00g/100g. A higher content of trigonelline levels was observed as the quality of the green coffee decreased in classes 6, 7 and 8. The highest level of sucrose in green coffee beans was observed in class 3 coffee and the lowest in the class 9. Lower content of chlorogenic acids were observed among the high quality coffees i.e. class 3, 4 and 5 with class 3 having the lowest while a higher content was observed among the lower quality coffees i.e. classes 6, 7 and 9 with class 6 having a higher content was it significantly different in class 6 compared to 7 and 9?. Quantities of different chemical components among the classes are clear indicators that the classification method used on the Kenyan coffees brings out the differences in coffee quality based on the analysis of the green and the roasted coffees

    Resampling Methods in Physical Mapping

    No full text
    corecore