102 research outputs found
Cost and Technical Efficiency of German Hospitals – A Stochastic Frontier Analysis
Using a newly available and multifaceted dataset provided by the German Federal Statistical Office, this paper is the first to investigate both technical and cost efficiency of more than 1500 German general hospitals conducting a stochastic frontier analysis. The empirical results for the years from 2000 to 2003 indicate that private and non-profit hospitals are on average less cost and technical efficient than publicly owned hospitals. One explanation for this result may be that German private and non-profit hospitals produce at a longer average length of stay and, thereby, a higher cost per case than public institutions due to the incentives provided by reimbursement schemes until 2004. Furthermore, the paper reveals that non-subsidised hospitals are less efficient than their respective counterparts. Controlling for patients’ characteristics (in addition to the constructed case-mix weights), it can be shown that a high ratio of old patients decreases efficiency whereas a high ratio of female patients and a high surgery rate increase it.Hospital efficiency, ownership, privatisation
Effect of ground state charge transfer and photoinduced charge separation on the energy level alignment at metal halide perovskite/organic charge transport layer interfaces
One of the most promising routes for the future fabrication of solution-processable high-performance solar cells is to employ metal halide perovskites as photoactive material combined with organic semiconductors as charge extraction layers. An essential requirement to obtain high device performance is a proper energy level alignment across the device interfaces. Here, we investigate the interface between a triple cation perovskite and a prototypical electron acceptor molecule. Photoemission spectroscopy reveals a ground state charge transfer induced band bending on either side of the junction, which significantly alters the charge extraction barriers as compared to assumed vacuum level alignment and flat-band conditions. In addition, we demonstrate that upon white light illumination, the energy levels of the organic layer exhibit rigid shifts by up to 0.26 eV with respect to those of the perovskite, revealing a non-constant energy offset between the frontier energy levels of the two materials. Such level shifts of the organic transport layer are fully reversible upon switching on/off the light, indicating an electrostatic origin of this phenomenon caused by unbalanced distribution of photogenerated charge carriers. We therefore stress the importance of determining the energy level alignment at perovskite-based interfaces not only in the electronic ground state (dark) but also under device operating conditions (operando) to enable for a reliable correlation with the device performance.Peer Reviewe
The effect of substrate concentration on the methane-driven interaction network
Methane, the primary substrate for aerobic methanotrophs, regulates the rate of methanotrophic activity and shapes the composition of the methane-oxidizing community. Given that methane-derived carbon may fuel the food web in the soil, methane availability can potentially be a key determinant, structuring the network of the interacting methane-oxidizing community. Here, we determined the response of the methane-driven interaction network to different methane concentrations (∼1.5 %v/v, 3 %v/v, and 7 %v/v), indicative of different levels of energy flow through the soil food web, using a stable isotope probing approach with 13C-methane coupled to a co-occurrence network analysis in a microcosm study. The accumulated 13C-atom fraction in the total carbon content increased from 1.08 % (background level) to an average of 7.2 % in the incubation under 7 %v/v methane, indicating that the carbon-flow via the methanotrophs can significantly contribute to the total carbon in the rice paddy soil. The 13C-enriched 16 S rRNA gene sequencing analysis revealed the predominance of gammaproteobacterial methanotrophs and Methylocystis. The composition of the actively growing (13C-labelled) bacterial community was dissimilar in the incubation under ∼3 %v/v than under 1.5 %v/v and 7 %v/v methane. This was also reflected in the co-occurrence network analysis, where the topological properties indicated a more complex and connected network in the incubation under 3 %v/v methane. It thus appears that moderate methane concentrations fostered closer associations among members of the methane-oxidizing community. Overall, our research findings showed that the methanotrophs can contribute to the total soil carbon, and methane concentrations not only shifted the bacterial community, including the methanotrophic composition, but also affected bacterial interactions
The methane-driven interaction network in terrestrial methane hotspots
Background: Biological interaction affects diverse facets of microbial life by modulating the activity, diversity, abundance, and composition of microbial communities. Aerobic methane oxidation is a community function, with emergent community traits arising from the interaction of the methane-oxidizers (methanotrophs) and non-methanotrophs. Yet little is known of the spatial and temporal organization of these interaction networks in naturally-occurring complex communities. We hypothesized that the assembled bacterial community of the interaction network in methane hotspots would converge, driven by high substrate availability that favors specific methanotrophs, and in turn influences the recruitment of non-methanotrophs. These environments would also share more co-occurring than site-specific taxa. Results: We applied stable isotope probing (SIP) using 13C-CH4 coupled to a co-occurrence network analysis to probe trophic interactions in widespread methane-emitting environments, and over time. Network analysis revealed predominantly unique co-occurring taxa from different environments, indicating distinctly co-evolved communities more strongly influenced by other parameters than high methane availability. Also, results showed a narrower network topology range over time than between environments. Co-occurrence pattern points to Chthoniobacter as a relevant yet-unrecognized interacting partner particularly of the gammaproteobacterial methanotrophs, deserving future attention. In almost all instances, the networks derived from the 13C-CH4 incubation exhibited a less connected and complex topology than the networks derived from the unlabelledC-CH4 incubations, likely attributable to the exclusion of the inactive microbial population and spurious connections; DNA-based networks (without SIP) may thus overestimate the methane-dependent network complexity. Conclusion: We demonstrated that site-specific environmental parameters more strongly shaped the co-occurrence of bacterial taxa than substrate availability. Given that members of the interactome without the capacity to oxidize methane can exert interaction-induced effects on community function, understanding the co-occurrence pattern of the methane-driven interaction network is key to elucidating community function, which goes beyond relating activity to community composition, abundances, and diversity. More generally, we provide a methodological strategy that substantiates the ecological linkages between potentially interacting microorganisms with broad applications to elucidate the role of microbial interaction in community function. © 2022, The Author(s)
The Electronic Properties of a 2D Ruddlesden‐Popper Perovskite and its Energy Level Alignment with a 3D Perovskite Enable Interfacial Energy Transfer
The success of using 2D Ruddlesden-Popper metal halide perovskites (MHPs) in optoelectronic devices has ignited great interest as means for energy level tuning at the interface with 3D MHPs. Inter alia, the application of 2D phenylethylammonium lead quaternary iodide (PEA2PbI4)/3D MHPs interfaces has improved various optoelectronic devices, where a staggered type-II energy level alignment is often assumed. However, a type-II heterojunction seems to contradict the enhanced photoluminescence observed for 2D PEA2PbI4/3D MHP interfaces, which raises fundamental questions about the electronic properties of such junctions. In this study, using direct and inverse photoelectron spectroscopy, it is revealed that a straddling type-I energy level alignment is present at 2D PEA2PbI4/3D methylammonium lead triiodide (MAPbI3) interfaces, thus explaining that the photoluminescence enhancement of the 3D perovskite is induced by energy transfer from the 2D perovskite. These results provide a reliable fundamental understanding of the electronic properties at the investigated 2D/3D MHP interfaces and suggest careful (re)consideration of the electronic properties of other 2D/3D MHP heterostructures.Peer Reviewe
Elongator function in tRNA wobble uridine modification is conserved between yeast and plants
Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator-dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator's tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeast–plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life
Illumination Driven Energy Level Realignment at Buried Interfaces between Organic Charge Transport Layers and a Lead Halide Perovskite
Tremendous progress in employing metal halide perovskites MHPs in a variety of applications, especially in photovoltaics, has been made in the past decade. To unlock the full potential of MHP materials in optoelectronic devices, an improved understanding of the electronic energy level alignment at perovskite based interfaces is required. This particularly pertains to such interfaces under device operation conditions, e.g. under illumination with visible light such as in a solar cell. Herein, it is revealed that the energy level alignment at the buried interface between a double cation lead halide perovskite film and charge selective organic transport layers changes upon white light illumination. This is found from photoemission experiments performed with the samples in dark and under illumination, and the interfacial energy level shift is reversible. The underlying mechanism is attributed to the accumulation of one charge carrier type within the perovskite film at the interface under illumination, as a result of the charge selective nature of the organic layer. The fact that the interfacial energy level alignment at MHP based junctions under illumination can differ from that in dark is to be taken into account to fully rationalize device characteristic
Position locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite
The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH(3)NH(3)PbI(3) perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI(2) and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N(2) and ambient air (relative humidity 20%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH(3)NH(3)PbI(3) films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N(2) or air. We conclude that the light-induced decomposition reaction of CH(3)NH(3)PbI(3), leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently “locking” the position of perovskite components at the surface or an interface should enhance the overall photostability
hElp3 Directly Modulates the Expression of HSP70 Gene in HeLa Cells via HAT Activity
Human Elongator complex, which plays a key role in transcript elongation in vitro assay, is incredibly similar in either components or function to its yeast counterpart. However, there are only a few studies focusing on its target gene characterization in vivo. We studied the effect of down-regulation of the human elongation protein 3 (hELP3) on the expression of HSP70 through antisense strategy. Transfecting antisense plasmid p1107 into HeLa cells highly suppressed hELP3 expression, and substantially reduced expression of HSP70 mRNA and protein. Furthermore, chromatin immunoprecipitation assay (ChIP Assay) revealed that hElp3 participates in the transcription elongation of HSPA1A in HeLa cells. Finally, complementation and ChIP Assay in yeast showed that hElp3 can not only complement the growth and slow activation of HSP70 (SSA3) gene transcription, but also directly regulates the transcription of SSA3. On the contrary, these functions are lost when the HAT domain is deleted from hElp3. These data suggest that hElp3 can regulate the transcription of HSP70 gene, and the HAT domain of hElp3 is essential for this function. These findings now provide novel insights and evidence of the functions of hELP3 in human cells
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
Funder: Alexander von Humboldt Foundation; Id: http://dx.doi.org/10.13039/100005156Abstract: Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells
- …
