147 research outputs found

    DĂ©veloppement durable ? : doctrines, pratiques, Ă©valuations

    Get PDF

    MoO3/CuI hybrid buffer layer for the optimization of organic solar cells based on a donor-acceptor triphenylamine

    Get PDF
    We investigate the effect of anode buffer layers (ABLs) on the performances of multi-layer heterojunction solar cells with thienylenevinylene-triphenylamine with peripheral dicyanovinylene groups (TDCV-TPA) as donor material and fullerene C-60 as acceptor. The deposition of a CuI layer between the ITO anode and the electron donor significantly improves the short-circuit current density (J(sc)) and fill factor (FF) but reduces the open-circuit voltage (V-oc). On the other hand, a MoO3 buffer layer increases the V-oc but leads to limited J(sc) and FF values, thus reducing power conversion efficiency (PCE). In this context, we show that the use of a hybrid anode buffer layer MoO3/CuI leads to a considerable improvement of the cells performances and a PCE of 2.50% has been achieved. These results are discussed on the basis of the dual function of MoO3 and CuI. While both of them reduce the hole injection barrier, CuI improves the conductivity of the organic film through an improvement of molecular order while MoO3 prevents leakage current through the diode. Finally the results of a cursory study of the ageing process provide further support to this interpretation of the effects of the various buffer layers. (C) 2012 Elsevier B.V. All rights reserved

    Exploring the three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast

    Get PDF
    Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24–38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these speciesinfo:eu-repo/semantics/publishedVersio

    Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans

    Get PDF
    Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research
    • …
    corecore