119 research outputs found

    Some New Addition Formulae for Weierstrass Elliptic Functions

    Get PDF
    We present new addition formulae for the Weierstrass functions associated with a general elliptic curve. We prove the structure of the formulae in n-variables and give the explicit addition formulae for the 2- and 3-variable cases. These new results were inspired by new addition formulae found in the case of an equianharmonic curve, which we can now observe as a specialisation of the results here. The new formulae, and the techniques used to find them, also follow the recent work for the generalisation of Weierstrass' functions to curves of higher genus.Comment: 20 page

    Development of high speed power thyristor: The gate assisted turn-off thyristor

    Get PDF
    A high speed power switch with unique turn-off capability was developed. This gate-assisted turn-off thyristor was rated at 609 V and 50 A with turn-off times of 2 microsec. Twenty-two units were delivered for evaluation in a series inverter circuit. In addition, test circuits designed to relate to the series inverter application were built and demonstrated

    A note on the Gauss decomposition of the elliptic Cauchy matrix

    Full text link
    Explicit formulas for the Gauss decomposition of elliptic Cauchy type matrices are derived in a very simple way. The elliptic Cauchy identity is an immediate corollary.Comment: 5 page

    Some addition formulae for Abelian functions for elliptic and hyperelliptic curves of cyclotomic type

    Full text link
    We discuss a family of multi-term addition formulae for Weierstrass functions on specialized curves of genus one and two with many automorphisms. In the genus one case we find new addition formulae for the equianharmonic and lemniscate cases, and in genus two we find some new addition formulae for a number of curves, including the Burnside curve.Comment: 19 pages. We have extended the Introduction, corrected some typos and tidied up some proofs, and inserted extra material on genus 3 curve

    Twisted Frobenius-Schur indicators for Hopf algebras

    Get PDF
    The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bump and Ginzburg, building on earlier work of Mackey, have defined versions of these indicators which are twisted by an automorphism of the group. In another direction, Linchenko and Montgomery have defined Frobenius-Schur indicators for semisimple Hopf algebras. In this paper, the authors construct twisted Frobenius-Schur indicators for semisimple Hopf algebras; these include all of the above indicators as special cases and have similar properties.Comment: 12 pages. Minor revision

    Sign Rules for Anisotropic Quantum Spin Systems

    Full text link
    We present new and exact ``sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive-definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the effects of sign rules in variational calculations and quantum Monte Carlo calculations are considered. They are illustrated by a simple variational treatment of a one-dimensional anisotropic spin model.Comment: 4 pages, 1 ps-figur

    Series and integral representations of the Taylor coefficients of the Weierstrass sigma-function

    Full text link
    We provide two kinds of representations for the Taylor coefficients of the Weierstrass σ\sigma-function σ(;Γ)\sigma(\cdot;\Gamma) associated to an arbitrary lattice Γ\Gamma in the complex plane C=R2\mathbb{C}=\mathbb{R}^2 - the first one in terms of the so-called Hermite-Gauss series over Γ\Gamma and the second one in terms of Hermite-Gauss integrals over C\mathbb{C}.Comment: 12 page

    On conformal measures and harmonic functions for group extensions

    Full text link
    We prove a Perron-Frobenius-Ruelle theorem for group extensions of topological Markov chains based on a construction of σ\sigma-finite conformal measures and give applications to the construction of harmonic functions.Comment: To appear in Proceedings of "New Trends in Onedimensional Dynamics, celebrating the 70th birthday of Welington de Melo

    Integrable Time-Discretisation of the Ruijsenaars-Schneider Model

    Full text link
    An exactly integrable symplectic correspondence is derived which in a continuum limit leads to the equations of motion of the relativistic generalization of the Calogero-Moser system, that was introduced for the first time by Ruijsenaars and Schneider. For the discrete-time model the equations of motion take the form of Bethe Ansatz equations for the inhomogeneous spin-1/2 Heisenberg magnet. We present a Lax pair, the symplectic structure and prove the involutivity of the invariants. Exact solutions are investigated in the rational and hyperbolic (trigonometric) limits of the system that is given in terms of elliptic functions. These solutions are connected with discrete soliton equations. The results obtained allow us to consider the Bethe Ansatz equations as ones giving an integrable symplectic correspondence mixing the parameters of the quantum integrable system and the parameters of the corresponding Bethe wavefunction.Comment: 27 pages, latex, equations.st

    Two-Center Integrals for r_{ij}^{n} Polynomial Correlated Wave Functions

    Full text link
    All integrals needed to evaluate the correlated wave functions with polynomial terms of inter-electronic distance are included. For this form of the wave function, the integrals needed can be expressed as a product of integrals involving at most four electrons
    corecore