2,419 research outputs found
Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory
Manipulating expressions in many-body perturbation theory becomes unwieldily
with increasing order of the perturbation theory. Here I derive a set of
theorems for efficient simplification of such expressions. The derived rules
are specifically designed for implementing with symbolic algebra tools. As an
illustration, we count the numbers of Brueckner-Goldstone diagrams in the first
several orders of many-body perturbation theory for matrix elements between two
states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from
http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm
Target effects in negative-continuum assisted dielectronic recombination
The process of recombination of a quasi-free electron into a bound state of
an initially bare nucleus with the simultaneous creation of a
bound-electron--free-positron pair is investigated. This process is called the
negative-continuum assisted dielectronic recombination (NCDR). In a typical
experimental setup, the initial electron is not free but bound in a light
atomic target. In the present work, we study the effects of the atomic target
on the single and double-differential cross sections of the positron production
in the NCDR process. The calculations are performed within the relativistic
framework based on QED theory, with accounting for the electron-electron
interaction to first order in perturbation theory. We demonstrate how the
momentum distribution of the target electrons removes the non-physical
singularity of the differential cross section which occurs for the initially
free and monochromatic electrons
Classical analogy for the deflection of flux avalanches by a metallic layer
Sudden avalanches of magnetic flux bursting into a superconducting sample
undergo deflections of their trajectories when encountering a conductive layer
deposited on top of the superconductor. Remarkably, in some cases flux is
totally excluded from the area covered by the conductive layer. We present a
simple classical model that accounts for this behaviour and considers a
magnetic monopole approaching a semi-infinite conductive plane. This model
suggests that magnetic braking is an important mechanism responsible for
avalanche deflection.Comment: 14 pages, 5 figure
Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones
The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe
has been measured which finalizes the systematic survey to investigate the
so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with
the method of nuclear resonance fluorescence using real photons in the entrance
channel. In all cases, a fragmented resonance-like structure of E1 strength is
observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation
of the strength reveals that the degree of fragmentation decreases towards the
proton-deficient isotones while the total integrated strength increases
indicating a dependence of the total strength on the neutron-to-proton ratio.
The experimental results are compared to microscopic calculations within the
quasi-particle phonon model (QPM). The calculation includes complex
configurations of up to three phonons and is able to reproduce also the
fragmentation of the E1 strength which allows to draw conclusions on the
damping of the PDR. Calculations and experimental data are in good agreement in
the degree of fragmentation and also in the integrated strength if the
sensitivity limit of the experiments is taken into account
Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen
A relativistic analysis of the polarization properties of light elastically
scattered by atomic hydrogen is performed, based on the Dirac equation and
second order perturbation theory. The relativistic atomic states used for the
calculations are obtained by making use of the finite basis set method and
expressed in terms of splines and polynomials. We introduce two
experimental scenarios in which the light is circularly and linearly polarized,
respectively. For each of these scenarios, the polarization-dependent angular
distribution and the degrees of circular and linear polarization of the
scattered light are investigated as a function of scattering angle and photon
energy. Analytical expressions are derived for the polarization-dependent
angular distribution which can be used for scattering by both hydrogenic as
well as many-electron systems. Detailed computations are performed for Rayleigh
scattering by atomic hydrogen within the incident photon energy range 0.5 to 10
keV. Particular attention is paid to the effects that arise from higher
(nondipole) terms in the expansion of the electron-photon interaction.Comment: 8 pages, 5 figure
Relativistic and retardation effects in the two--photon ionization of hydrogen--like ions
The non-resonant two-photon ionization of hydrogen-like ions is studied in
second-order perturbation theory, based on the Dirac equation. To carry out the
summation over the complete Coulomb spectrum, a Green function approach has
been applied to the computation of the ionization cross sections. Exact
second-order relativistic cross sections are compared with data as obtained
from a relativistic long-wavelength approximation as well as from the scaling
of non-relativistic results. For high-Z ions, the relativistic wavefunction
contraction may lower the two-photon ionization cross sections by a factor of
two or more, while retardation effects appear less pronounced but still give
rise to non-negligible contributions.Comment: 6 pages, 2 figure
Spins, Electromagnetic Moments, and Isomers of 107-129Cd
The neutron-rich isotopes of cadmium up to the N=82 shell closure have been
investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5
nm and radioactive-beam bunching provided the required experimental
sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first
time. One essential feature of the spherical shell model is unambiguously
confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably,
this mechanism is found to act well beyond the h11/2 shell
- …
