7,777 research outputs found

    Pure spin-angular momentum coefficients for non-scalar one-particle operators in jj-coupling

    Full text link
    A revised program for generating the spin-angular coefficients in relativistic atomic structure calculations is presented. When compared with our previous version [G.Gaigalas, S.Fritzsche and I.P.Grant, CPC 139 (2001) 263], the new version of the Anco program now provides these coefficients for both, scalar as well as non-scalar one-particle operators as they arise frequently in the study of transition probabilities, photoionization and electron capture processes, the alignment transfer through excited atomic states, collision strengths, and in many other investigations. The program is based on a recently developed formalism [G.Gaigalas, Z.Rudzikas, and C.F.Fischer, J. Phys. B 30 (1997) 3747], which combines techniques from second quantization in coupled tensorial form, the theory of quasispin, and the use of reduced coefficients of fractional parentage, in order to derive the spin-angular coefficients for complex atomic shell structures more efficiently. By making this approach now available also for non-scalar interactions, therefore, studies on a whole field of new properties and processes are likely to become possible even for atoms and ions with a complex structure

    Maple procedures for the coupling of angular momenta. VI. LS-jj transformations

    Full text link
    Transformation matrices between different coupling schemes are required, if a reliable classification of the level structure is to be obtained for open-shell atoms and ions. While, for instance, relativistic computations are traditionally carried out in jj-coupling, a LSJ coupling notation often occurs much more appropriate for classifying the valence-shell structure of atoms. Apart from the (known) transformation of single open shells, however, further demand on proper transformation coefficients has recently arose from the study of open d- and f-shell elements, the analysis of multiple--excited levels, or the investigation on inner-shell phenomena. Therefore, in order to facilitate a simple access to LS jj transformation matrices, here we present an extension to the Racah program for the set-up and the transformation of symmetry-adapted functions. A flexible notation is introduced for defining and for manipulating open-shell configurations at different level of complexity which can be extended also to other coupling schemes and, hence, may help determine an optimum classification of atomic levels and processes in the future

    Relativistic central--field Green's functions for the RATIP package

    Full text link
    From perturbation theory, Green's functions are known for providing a simple and convenient access to the (complete) spectrum of atoms and ions. Having these functions available, they may help carry out perturbation expansions to any order beyond the first one. For most realistic potentials, however, the Green's functions need to be calculated numerically since an analytic form is known only for free electrons or for their motion in a pure Coulomb field. Therefore, in order to facilitate the use of Green's functions also for atoms and ions other than the hydrogen--like ions, here we provide an extension to the Ratip program which supports the computation of relativistic (one--electron) Green's functions in an -- arbitrarily given -- central--field potential \rV(r). Different computational modes have been implemented to define these effective potentials and to generate the radial Green's functions for all bound--state energies E<0E < 0. In addition, care has been taken to provide a user--friendly component of the Ratip package by utilizing features of the Fortran 90/95 standard such as data structures, allocatable arrays, or a module--oriented design.Comment: 20 pages, 1 figur

    The Role of the Unconscious in the Perception of Risks

    Get PDF
    Dr. Fritzsche argues that our world is too rational and that the psychology of the unconscious, as developed by Jung, can be key to understanding responses to hazards and to resolving conflicts that arise in the political management of risks

    The Moral Dilemma in the Social Management of Risks

    Get PDF
    Dr. Fritzsche offers data seen as demonstrating that irrational fears can lead to grotesque imbalances in social efforts devoted to preventing fatalities

    Program to calculate pure angular momentum coefficients in jj-coupling

    Full text link
    A program for computing pure angular momentum coefficients in relativistic atomic structure for any scalar one- and two-particle operator is presented. The program, written in Fortran 90/95 and based on techniques of second quantization, irreducible tensorial operators, quasispin and the theory of angular momentum, is intended to replace existing angular coefficient modules from GRASP92. The new module uses a different decomposition of the coefficients as sums of products of pure angular momentum coefficients, which depend only on the tensor rank of the interaction but not on its details, with effective interaction strengths of specific interactions. This saves memory and reduces the computational cost of big calculations signficantly

    Relativistic wave and Green's functions for hydrogen--like ions

    Full text link
    The \textsc{Greens} library is presented which provides a set of C++ procedures for the computation of the (radial) Coulomb wave and Green's functions. Both, the nonrelativistic as well as relativistic representations of these functions are supported by the library. However, while the wave functions are implemented for all, the bound and free--electron states, the Green's functions are provided only for bound--state energies (E<0(E < 0). Apart from the Coulomb functions, moreover, the implementation of several special functions, such as the Kummer and Whittaker functions of the first and second kind, as well as a few utility procedures may help the user with the set--up and evaluation of matrix elements.Comment: 21 page

    High-fidelity copies from a symmetric 1 to 2 quantum cloning machine

    Full text link
    A symmetric 1 to 2 quantum cloning machine (QCM) is presented that provides high-fidelity copies with 0.90≤F≤0.950.90 \le F \le 0.95 for all pure (single-qubit) input states from a given meridian of the Bloch sphere. \cor{Emphasize is placed especially on the states of the (so-called) Eastern meridian, that includes the computational basis states \ketm{0}, \ketm{1} together with the diagonal state \ketm{+} = \frac{1}{\sqrt{2}} (\ketm{0} + \ketm{1}), for which suggested cloning transformation is shown to be optimal.} In addition, we also show how this QCM can be utilized for eavesdropping in Bennett's B92 protocol for quantum key distribution with a substantial higher success rate than obtained for universal or equatorial quantum copying.Comment: 2 figures, 20 reference
    • …
    corecore