25 research outputs found

    Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution

    Get PDF
    AbstractThe enormous diversity of extant animal forms is a testament to the power of evolution, and much of this diversity has been achieved through the emergence of novel morphological traits. The origin of novel morphological traits is an extremely important issue in biology, and a frequent source of this novelty is co-option of pre-existing genetic systems for new purposes (Carroll et al., 2008). Appendages, such as limbs, fins and antennae, are structures common to many animal body plans which must have arisen at least once, and probably multiple times, in lineages which lacked appendages. We provide evidence that appendage proximodistal patterning genes are expressed in similar registers in the anterior embryonic neurectoderm of Drosophila melanogaster and Saccoglossus kowalevskii (a hemichordate). These results, in concert with existing expression data from a variety of other animals suggest that a pre-existing genetic system for anteroposterior head patterning was co-opted for patterning of the proximodistal axis of appendages of bilaterian animals

    Hemichordate genomes and deuterostome origins

    Get PDF
    Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor

    The blastoporal organiser of a sea anemone

    No full text
    In 1924 Hilde Mangold and Hans Spemann transplanted the dorsal blastopore lip of an amphibian embryo to a host embryo's ventral side. This experiment revealed that the dorsal blastopore lip can act as an 'organiser' to induce a secondary body axis [1]. The organiser experiment has fueled research in vertebrate developmental biology until today [2,3]. While an organiser might have been present in the chordate ancestor [4], it is not clear how widespread the principle of the blastoporal organiser is and what its evolutionary roots are. Here, we examined the organising activity of different parts of embryos of the sea anemone Nematostella vectensis, a representative of the basal animal phylum Cnidaria, which has retained many ancestral traits. We show by transplantation of small parts of the gastrula embryo that the blastopore lip - but not tissue from other parts of the embryo - is able to act as an organiser and to induce the formation of a secondary body axis with high efficienc

    FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis.

    No full text
    Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling
    corecore