12,228 research outputs found

    Learning Manipulation under Physics Constraints with Visual Perception

    No full text
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure

    The evolution of the number density of compact galaxies

    Full text link
    We compare the number density of compact (small size) massive galaxies at low and high redshift using our Padova Millennium Galaxy and Group Catalogue (PM2GC) at z=0.03-0.11 and the CANDELS results from Barro et al. (2013) at z=1-2. The number density of local compact galaxies with luminosity weighted (LW) ages compatible with being already passive at high redshift is compared with the density of compact passive galaxies observed at high-z. Our results place an upper limit of a factor ~2 to the evolution of the number density and are inconsistent with a significant size evolution for most of the compact galaxies observed at high-z. The evolution may be instead significant (up to a factor 5) for the most extreme, ultracompact galaxies. Considering all compact galaxies, regardless of LW age and star formation activity, a minority of local compact galaxies (<=1/3) might have formed at z<1. Finally, we show that the secular decrease of the galaxy stellar mass due to simple stellar evolution may in some cases be a non-negligible factor in the context of the evolution of the mass-size relation, and we caution that passive evolution in mass should be taken into account when comparing samples at different redshifts.Comment: ApJ in pres

    Transport Properties of a Chain of Anharmonic Oscillators with random flip of velocities

    Get PDF
    We consider the stationary states of a chain of nn anharmonic coupled oscillators, whose deterministic hamiltonian dynamics is perturbed by random independent sign change of the velocities (a random mechanism that conserve energy). The extremities are coupled to thermostats at different temperature TℓT_\ell and TrT_r and subject to constant forces τℓ\tau_\ell and τr\tau_r. If the forces differ τℓ≠τr\tau_\ell \neq \tau_r the center of mass of the system will move of a speed VsV_s inducing a tension gradient inside the system. Our aim is to see the influence of the tension gradient on the thermal conductivity. We investigate the entropy production properties of the stationary states, and we prove the existence of the Onsager matrix defined by Green-kubo formulas (linear response). We also prove some explicit bounds on the thermal conductivity, depending on the temperature.Comment: Published version: J Stat Phys (2011) 145:1224-1255 DOI 10.1007/s10955-011-0385-

    Proteinase inhibitor candidates for therapy of enzyme-inhibitor imbalances

    Get PDF

    The Clinical Approach to Successful Program Development

    Get PDF
    To more adequately meet the needs for the decade ahead, it is essential that sociology departments evaluate their existing curricula and plan new programs or concentrations that will interest and attract students. Using the example of clinical sociology, this article focuses on general guidelines for developing a variety of program models in sociological practice. The guidelines are divided into the three parts of assessment, planning, and implementation, and an inventory of ideas and suggestions are given for each phase. Relevant issues of the importance of labels, leadership and independence, and rationales for program development are discussed

    An entropic approach to local realism and noncontextuality

    Full text link
    For any Bell locality scenario (or Kochen-Specker noncontextuality scenario), the joint Shannon entropies of local (or noncontextual) models define a convex cone for which the non-trivial facets are tight entropic Bell (or contextuality) inequalities. In this paper we explore this entropic approach and derive tight entropic inequalities for various scenarios. One advantage of entropic inequalities is that they easily adapt to situations like bilocality scenarios, which have additional independence requirements that are non-linear on the level of probabilities, but linear on the level of entropies. Another advantage is that, despite the nonlinearity, taking detection inefficiencies into account turns out to be very simple. When joint measurements are conducted by a single detector only, the detector efficiency for witnessing quantum contextuality can be arbitrarily low.Comment: 12 pages, 8 figures, minor mistakes correcte

    Classical versus Quantum Time Evolution of Densities at Limited Phase-Space Resolution

    Full text link
    We study the interrelations between the classical (Frobenius-Perron) and the quantum (Husimi) propagator for phase-space (quasi-)probability densities in a Hamiltonian system displaying a mix of regular and chaotic behavior. We focus on common resonances of these operators which we determine by blurring phase-space resolution. We demonstrate that classical and quantum time evolution look alike if observed with a resolution much coarser than a Planck cell and explain how this similarity arises for the propagators as well as their spectra. The indistinguishability of blurred quantum and classical evolution implies that classical resonances can conveniently be determined from quantum mechanics and in turn become effective for decay rates of quantum correlations.Comment: 10 pages, 3 figure

    Optimization conditions of UV-C radiation combined with ultrasound-assisted extraction of cherry tomato (Lycopersicon esculentum) lycopene extract

    Get PDF
    The aim of this work was to study the effect of UV-C radiation on ultrasound assisted extraction (UAE) of cherry tomato bioactive compounds. Cherry tomatoes were exposed to two UV-C radiation doses (0.5 and 1.0 J cm−2 ) and stored at 20 ± 0.5 oC for 7 days. Next, they were lyophilized, and the bioactive compounds were extracted by UAE at 20 KHz. To evaluate the effectiveness of the extraction process of the bioactive compounds, a CCRD (central composite rotational design) was used together with RSM (response surface methodology), for extraction times from 4 to 12 minutes and concentrations (g of lyophilized product / L of ethanol) of 1:10, 1:20 and 1:30. The extracts obtained from the irradiated tomatoes presented 5.8 times more lycopene content than the controls and higher antioxidant activity was obtained for 4 and 8 min, in the concentrations 1:10 and 1:20 (m v−1). Through numerical model optimization, optimal extraction conditions were obtained. The results demonstrated that by previously irradiating tomatoes with UV-C light, the UAE yielded considerably higher amounts of lycopene and other bioactives.CNPq (National Council of Technological and Scientific Development, Brazil), Erasmus Mundus action 2; Fellow Mundus Project; Department of Chemical Engineering and Food Engineering (UFSC - Brazil) and the Department of Food Engineering (UAlg - Portugal) .info:eu-repo/semantics/publishedVersio

    The Clinical Approach to Successful Program Development

    Get PDF
    To more adequately meet the needs for the decade ahead, it is essential that sociology departments evaluate their existing curricula and plan new programs or concentrations that will interest and attract students. Using the example of clinical sociology, this article focuses on general guidelines for developing a variety of program models in sociological practice. The guidelines are divided into the three parts of assessment, planning, and implementation, and an inventory of ideas and suggestions are given for each phase. Relevant issues of the importance of labels, leadership and independence, and rationales for program development are discussed
    • 

    corecore