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Rationale for Therapeutic Use of Proteinase Inhibitors 

Proteinase inhibitors are important regulators of proteolytic processes in the 
healthy organism as well as potent protectors against destructive proteolysis in 
various diseases. 

Our knowledge on their functional role arises either from congenital or acquired 
deficiencies in endogenous proteinase inhibitor proteins. 

Best known examples are the predisposition for lung emphysema formation 
because of inherited o^PI deficiency1 and severe bleeding disorders (disseminated 
intravascular coagulation, DIC) due to massive consumption of antithrombin I I I 
( A T I I I ) e.g. in septic shock.2 

The major target enzyme of α ,ΡΙ is the lysosomal elastase from neutrophils. This 
digestive proteinase is thought to play a crucial role in degradation of lung elastin 
fibres and thus emphysema development i f it is released extracellularly from 
accumulating neutrophils into lung tissue over many years without being effectively 
inhibited due to lack of α,ΡΙ . 

Severe deficiency in oCjPI can be caused also by inflammatory events, at least 
locally. 

For example, strong stimulation of phagocytes accumulating (e.g. neutrophils, 
monocytes) or present (e.g. macrophages) in an infectious or traumatic focus leads 
to generation and extracellular release of numerous oxidants and lysosomal 
digestive enzymes. α ,ΡΙ is rapidly inactivated by both types of substances, e.g. 
oxidants like hydrogen peroxide together with myeloperoxidase3 as well as cysteine 
and metalloproteinases.4 , 5 
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F ig . 1. P r o t e o l y s i s - i n d u c e d p a t h o m e c h a n i s m s in i n f l a m m a t o r y p r o c e s s e s . A c t i v a t i o n of p r o t e i n a s e 
c a s c a d e s y s t e m s a n d l i be ra t i on of l y s o s o m a l p r o t e i n a s e s c o n c o m i t a n t l y w i t h r e a c t i v e o x y g e n s p e c i e s 
m a y c a u s e m a s s i v e c o n s u m p t i o n of p r o t e i n a s e inh ib i to rs w h i c h p r o t e c t t he o r g a n i s m a g a i n s t 
e x c e s s i v e s y s t e m - s p e c i f i c p ro teo l ys i s ( see c a s c a d e s y s t e m s ) a n d u n s p e c i f i c p ro teo l y t i c d e g r a d a t i o n 
b y l y s o s o m a l e n z y m e s . 

As neutrophil elastase has its proteolysis optimum at slightly alkaline, i.e. 
physiological pH, this enzyme degrades effectively structural elements such as 
basal membranes, elastin and collagen fibres, fibronectin and proteoglycans as well 
as all kinds of humoral protein factors including the proteinase inhibitors regulating 
the plasmatic enzyme cascade systems (clotting, fibrinolysis, complement) 6 in the 
absence of inhibitors ( Fig. 1). 

In this way a local inflammatory process with an isolated impaired organ 
function due to e.g. oedema formation may become a generalized systemic 
inflammation leading finally to multiple organ failure and even death.6 

Excessive consumption or destruction of proteinase inhibitors and especially of 
0Cj PI during an inflammatory process is, therefore, a most critical event enabling the 
propagation of the manifold pathomechanisms inducible by proteinases which are 
"out of control" by their natural antagonists, the proteinase inhibitor proteins. As 
the natural sources for their preparation from human material are very restricted, 
the design of highly effective inhibitory proteins on the basis of human proteinase 
inhibitor molecules by molecular modelling and their production by recombinant 
D N A technology is the most promising approach at present to get the quantities 
necessary for proteinase inhibition therapy in future.7 
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Inhibitor Candidates 

General comments and overview 
Numerous efforts to design synthetic proteinase inhibitors (including such for 

neutrophil elastase) for therapeutic purposes have been not very successful so far . 8 9 

The major problems such synthetic compounds are concerned with are: 

1. sufficient restriction of the inhibitory specificity to avoid undesired side effects; 
2. rapid elimination from all compartments of the organism. 

Proteinase inhibition therapy suitable for a wider medical application has to be 
oriented primarily on the "functional design" of the natural endogenous inhibitors 
and, in special cases, on the biochemical conditions of the disease state. For 
example: Inhibitors designed to interfere with proteinases of the humoral cascade 
systems (clotting and kallikrein-kinin pathway, fibrinolysis, complement) should 
react either highly specifically with a certain proteinase - many of them with 
different functions are closely related - or resemble in their inhibition spectrum the 
endogenous serpins, which presumably have adopted "ideal" properties during 
evolution. Inhibitors designed to block lysosomal digestive proteinases ( i f re
leased extracellularly) should not interfere at all with the intracellular protein 
breakdown, i.e. the elimination function of the phagocytes (reticuloendothelial 
system). 

Hence, they should not be taken up into phagolysosomes or, i f this occurs, they 
must be sensitive to oxidative and/or proteolytic inactivation in the digestive 
vacuole. The same holds true i f such inhibitors are used for long term therapy to 
enable their proper inactivation, especially i f their target proteinase should be, in 
addition to intracellular processes, involved also in an extracellular function, e.g. 
in penetration of phagocytes through glycoprotein membrane layers. 1 0 " 

On the other hand, under severe inflammatory conditions (e.g. multiple inju
ries, septicaemia, isolated or multiple organ failure like ARDS or MOF) phagocytes 
may produce high amounts of oxygen free radicals, hydrogen peroxide etc. and 
even discharge their lysosomal contents;6 in such dramatic pathological events 
oxidation-resistant proteinase inhibitors might be much more effective as "anti
inflammatory drugs".7 Further, to minimize the risk of a response of the immune 
system, clinically administered inhibitors should resemble as closely as possible 
the endogenous inhibitor proteins. Inhibitor candidates which according to our 
opinion are most suitable for proteinase inhibition therapy as discussed above or 
elsewhere7 are listed in Table I . 

al Proteinase Inhibitor (a}PI) 
The predominant natural antagonist of neutrophil elastase, which is already 
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Table I . Inhibitor candidates of human origin suitable for proteinase (neutrophil elastase 
etc.3) inhibition therapy 

a, PI native form 
r-variants 

glycoprotein 
proteins 

-oxidizable 
-oxidation resistant 

MPI native form 
r-variants 

mini protein 
mini proteins 

-oxidizable 
- oxidation resistant 

Aprotinin (miniprotein) homologous domains'5 (no.) in: 
1. Inter-oc-trypsin inhibitor complex as Bikunin (2) 
2. Alzheimer amyloid protein precursor Pre A4 (1) 
3. Lipoprotein-associated coagulation inhibitor (3) 

Kazal-type inhibitors (miniproteins): r-variants of: 
1. Pancreatic secretory trypsin inhibitor, PSTI 
2. Seminal acrosin-trypsin inhibitor, HUSI-II 

a and/or cathepsin G and/or mast cell chymase;b recombinant variants; r = recombinant 

therapeutically given to α,ΡΙ-deficient individuals with lung emphysema, can be 
isolated from normal human blood only in limited quantities. 

Therefore, various possibilities for its production by genetic engineering are 
presently under investigation. 1 2 1 3 

The same is true for an oxidation resistant artificial mutant of a,PI, V a l 3 5 8 

α , Ρ Ι , 1 4 · 1 5 as well as for a naturally occurring mutant (and variants thereof), A r g 3 5 8 

α,ΡΙ , which is a strong inhibitor of thrombin and plasma kall ikrein 1 5 - 1 6 (Table I I ) . 
However, as long as these α ,ΡΙ homologues cannot be produced in sufficient 

Table I I . Residues in the reactive site region and inhibitory specificity of serpins 

Serpin Major target Residues in positions 
or variant enzyme p 2 Pi Ρ ' , 

P ,2 P'4 

a, PI (a, AT) neutrophil Ε Pro Met Scr He Pro Pro 
r-variant* neutrophil Ε Pro Val Ser He Pro Pro 
a l Pi-Pittsburgh thrombin Pro Arg Ser He Pro Pro 
Antithrombin I I I thrombin Gly Arg Ser Leu Asn Pro 

AT = antitrypsin; Ε = elastase; ^oxidation resistant, cf. Table I 
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quantities in the natural glycoprotein form, their suitability in pharmacological 
terms (distribution within the organism, elimination rate, etc.) and a possible 
immune response against the carbohydrate chain free, "naked" proteins has to be 
carefully considered. 

Mucus proteinase inhibitor (MPI) 
The mucus proteinase inhibitor M P I , also known as antileucoprotease (ALP) or 

secretory leucocyte proteinase inhibitor (SLPI), is the predominant natural antago
nist of neutrophil elastase in all mucous secretions of the organism. 1 7 It represents 
together with α,ΡΙ the main antiprotease shield of the upper airways (molar ratio 
of MPI=a ,PI > 1) and the lung ( Μ Ρ Ι = α , Ρ Ι < l ) . 7 

Despite the presence of 8 disulphide bridges within the molecule (Fig. 2), the 

Internal Homology in Human MPI and Gene Organisation 

1 10 20 

S G K S F K A G V C P P K K S A Q C L R Y K K P E - C -

I I I I I I I I 
N P T R R K P G K C P - V T Y G Q C L M L N P P N F C — 

60 70 80 

27 54 
ü E2 > 

30 40 50 
Q S D W Q C P G K K R C C P D T C G I K C L D P V D T P — 

I I I I I I I I I I 
E M D G Q C K R D L K C C M G M C G K S C V S P V K A 

90 100 
= E3 F = E 4 = > 

81 106ΓΤ07 

Exon 1: signal peptide - pos. 3; Exon 2: pos. 4-56 

Exon 3: pos. 57-106; Exon 4: pos. 107 + poly A recogn. signal 

F ig . 2 . P r i m a r y s t r uc tu re , in terna l s e q u e n c e h o m o l o g y a n d g e n o m i c o r g a n i z a t i o n of t he h u m a n m u c u s 
p r o t e i n a s e inh ib i to r M P I . 
T h e e x o n - i n t r o n o r g a n i z a t i o n re f lec ts the t w o s t ruc tu ra l h o m o l o g o u s d o m a i n s of t he MPI m o l e c u l e . 
P r e s e n t e v i d e n c e s u g g e s t s that it is t h e C - t e r m i n a l d o m a i n w h i c h is inh ib i to r i l y a c t i v e a g a i n s t n e u t r o p h i l 
e l a s t a s e a n d c a t h e p s i n G a s we l l a s c h y m o t r y p s i n a n d t r y p s i n ( P 1 = L e u 7 2 , P, '= M e t 7 3 ) 
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natural mature form of the miniprotein M P I can be produced already in sufficient 
quantity and purity to start investigation of its therapeutic effectiveness in animal 
models 1 8 and in patients suffering from emphysema and cystic fibrosis (Synergen, 
Boulder/Colorado, USA). For first therapeutic approaches to elucidate its potential 
anti-inflammatory effectiveness, an oxidation resistant M P I variant is also avail
able (Grünenthal GmbH, Stolberg/Rheinland, Germany). In this variant the four 
Met residues present in the second domain, which is responsible for neutrophil 
elastase and cathepsin G inhibition (Fig. 2), have been exchanged by aliphatic 
amino acid residues without impairment of the inhibitory activity. 1 9 

Aprotinin homologues 
The miniprotein aprotinin from bovine mast cells, a proteinase inhibitor with 

rather low specificity, has been used in medical therapy uncritically for a long time 
to treat numerous diseases20 before clinically clearly effective dosages were applied 
more recently. 2 1- 2 2 

Proteinase inhibition therapy with higher dosages of aprotinin proved to be 
especially valuable in open heart surgery with extracorporeal circulation whereby 
blood loss and transfusion requirement could be highly significantly reduced most 
probably due to effective plasmin inhibit ion. 2 3 2 4 

Polypeptide domains which are structurally closely related to bovine aprotinin 
have been found to occur also in human high molecular mass protein complexes or 
proteins (Table I ) . The "Bikunin" molecule present in the protein complex o f the 
inter-alpha-trypsin inhibitor consists essentially of two aprotinin-like domains, 
the N-terminal one (D,) being responsible for inhibition of neutrophil elastase and 
the C-terminal domain (D 2 ) for trypsin inhibition. 2 5 - 2 6 Exchange of the two Met 
residues in the reactive site region of the human Bikunin domain D] by Leu residues 
in the bovine molecule (Table I I I ) leads to a dramatic increase in the affinity to 
neutrophil elastase and cathepsin G. 2 6 Hence, artificial mutants of the human 
Bikunin molecule with high specificity and strong affinity to a certain target 
proteinase like the neutrophil elastase may be designed - e.g. by comparison with 
naturally occurring mutants or by molecular modelling of the structure o f the 
inhibitor in its complex with the proteinase - and finally produced by recombinant 
D N A techniques.2 7 A similar approach should be possible with the aprotinin-like 
domain(s) present in Alzheimer amyloid protein precursor PreA4, 2 8 and lipo-
protein-associated coagulation inhibitor. 2 9 

Kazal-type Inhibitors 

Kazal-type inhibitors comprise a family of miniproteins (single inhibitory 
domain) or proteins (composed of several such domains: multiheaded) with 
primary structures similar to the sequence of bovine pancreatic secretory trypsin 
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Table I I I . Reactive site residues in the N-terminal domains (D ) responsible for chymo-
trypsin and neutrophil elastase inhibition of the human and bovine Bikunin molecules. 
The C-terminal domains (D 2) responsible for trypsin inhibition have identical sequences 
in this region for both species 

Domain 

Subsite positions 

Domain P 3 P 2 
p ,

2 

human D{ Pro Cys Met Gly Met Thr 
bovine D{ Pro Cys Leu Gly Leu Phe 

Pro Cys Arg Ala Phe He 

inhibitor first described by Kazal; 3 0 they are widely distributed in vertebrates. 3 1 3 2 

In the human organism two Kazal-type inhibitors, each of them single-headed, have 
been identified unequivocally by amino acid sequence analysis. The first was 
pancreatic secretory trypsin inhibitor, PSTI, 3 3 and more recently the trypsi n-acrosin 
inhibitor HUSI- I I (human seminal acrosin inhibitor I I ) which occurs in male genital 
tract organs and secretions. 3 4 3 5 

Due to the extensive studies of M . Laskowski et al . 3 1 - 3 2 on structure-function 
relationships of Kazal-type avian ovomucoid domains, a large data base for 
predictable alterations of the inhibitory affinity and specificity by suitable 
substitutions of a single or a few residues in the reactive peptide sequence is 
available. In view of this knowledge the human PSTI which inhibits strongly its 
natural antagonist, the pancreatic trypsin, was chosen for a protein design project. 3 6 

Our aim was to develop inhibitors with high affinity against human neutrophil 

H 2N- Asp Ser Leu Gly Arg Glu Ala Lys Cys 9 Tyr Asn Glu Leu Asn 

, I Pi 

Gly Cys 6 Thr Lys He Tyr Asn Pro Val Cys 2 4 Gly Thr Asp Gly Asp 

Thr Tyr Pro Asn Glu Cys 3 5 Val Leu Cys 3 8 Phe Glu Asn Arg Lys Arg 

Gin Thr Ser He Leu He I 
Gin Lys Ser Gly Pro Cys 5 6 -COOH F ig . 3. P r imary s t r u c t u r e of the h u m a n p a n c r e a t i c s e c r e t o r y t r yps in inh ib i to r , PSTI , w i t h s u b s i t e p o s i t i o n s 

( r e s i d u e s ) in m o s t i n t ima te c o n t a c t to t h e e n z y m e ( s ) in t he c o m p l e x a n d d i s u l p h i d e b r i d g e s a s 
i n d i c a t e d . 
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Table IV. Inhibitory specificity of PSTI variants expected on the basis of M . Laskowski's 
structure-function algorithm of Kazal-type ovomucoid inhibitors 

PSTI 
variant 

Subsite position Specificity 
for 

PSTI 
variant p 2 p, p ' 2 

ρ· 3 P'n 

Specificity 
for 

PSTI η Thr Lys He Tyr Asp Asn Τ 
PSTIO Thr Lys He Tyr Asn Asp Τ 
PSTI 1 Thr Leu He Tyr Asn Asp Ε and Ch 
PSTI 2 Thr Leu He Tyr Asp Asn Ε and Ch 
PSTI 3 Thr Tyr Glu Tyr Arg Asp Ε 
PSTI 4 Thr Leu Glu Tyr Arg Asp Ε and Ch 
PSTI 5 Thr Val Glu Tyr Arg Asp Ε 
PSTI 6S Thr Leu Glu Tyr Asn Asp Ε and Ch 
PSTI 7 Thr Leu lie Tyr Arg Asp Ε and Ch 
PSTI 8 Thr Val Glu Leu Asn Asp Ε 
PSTI 9 Thr Val Glu Leu Arg Asp Ε 
PSTI 10 Pro Lys He Tyr Asp Asn Τ 
PSTI 11 Pro Leu Glu Tyr Arg Asp Ε and Ch 
PSTI 12 Pro Val Glu Tyr Arg Asp Ε 
PSTI 13 Thr He Glu Tyr Asn Asp E? 
PSTI 14 Thr Arg Glu Tyr Asn Asp Τ 
PSTI 15 Thr Phe Glu Tyr Asn Asp Ch and C-G 
PSTI 16 Thr Ala Glu Tyr Asn Asp Ε 
PSTI 17 Thr Val lie Tyr Asn Asp Ε 
PSTI 18 Thr He He Tyr Asn Asp E? 
PSTI 19 Thr Val He Tyr Asp Asn Ε 

η = natural native inhibitor; C-G = cathepsin G; Ch = chymotrypsin; Ε = elastase; Τ = trypsin 

elastase and cathepsin G with PSTI as model compound. 3 7 3 8 

The primary structure of PSTI and its subsite positions (residues) in most 
intimate contact with the target enzyme(s) in the complex are shown in figure 3. The 
primary inhibitory specificity of various artificial mutants of PSTI produced by 
recombinant D N A techniques is indicated in table I V . 

In Table V, PSTI variants exhibiting highest affinity for the chosen target 
enzymes are listed together with the K. values which reflect the influence of amino 
acid exchanges in certain subsite positions of the PSTI molecule on the affinity. 
Even further improvement of specificity and selectivity turned out to be possible 
by additional substitutions in position 21 or 36. 3 7 

At present, similar studies are being performed with the try psin-acrosin inhibitor 
HUSI- I I as model compound in other laboratories. 
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Table V. Inhibition of chymotrypsin (Ch) and neutrophil elastase (Ε) by r-PSTI variants 

The effect of the P, and P\ residues (all with P' 3 = Arg) 

PSTI variant *\ K,(Ch) K.(E) 

PSTI-3 Tyr Glu 1.6x10" >io-7 

PSTI-5 Val Glu 3.1xl0 7 1.5x10" 
PSTI-4 Leu Glu 2.4x10" 3.7x10" 
PSTI-7 Leu He 8.0xl0"9 2.5x10" 

The effect of the P' 3 residue (P, = Leu; P ' n = Asp) 

PSTI variant p \ K(Ch) K,(E) 

PSTI-1 Asn lie 5.0x108 5.0x10" 
PSTI-7 Arg He 8.0x109 2.5x10" 
PSTI-6 Asn Glu 2.0x108 2.5x10 1 0 

PSTI-4 Arg Glu 2.4x10" 3.7x10" 

K. = dissociation equilibrium constant of the enzyme-inhibitor complex in mol/l 

Table V I . Natural proteinase inhibitors in therapy 

Indication Applied Use envisaged Target enzymes 

hyperfibrinolysis, 
shock states 

bovine 
aprotinin 

plasmin, plasma 
and tissue kallikrein 

coagulopathy, DIC antithrombin HI r-hirudin thrombin 

angioneurotic oedema 

emphysema 

CI inhibitor 

α,ΡΙ 

plasma kallikrein, 
FXIIa, CI esterase 

inflammation (sepsis, 
ARDS, MOV, etc.) 

r-α,ΡΙ, r-eglin, 
r-MPI (ALP, SLPI)* 

neutrophil elastase 
and cathepsin G 

α,ΡΙ = α, proteinase inhibitor; r = recombinant 
*mucus proteinase inhibitor (ALP = antileucoprotease, SLPI = secretory leucocyte proteinase inhibitor) 
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Conclusion 

The given data show clearly that miniprotein inhibitors with highest affinity and 
selectivity for certain proteinases including further desired properties (e.g. oxida
tion resistance) can be prepared. Such artificial mutants of natural regulators of 
proteinases are of great value for both biochemical investigations of structure-
function relationships and therapeutic experimental and clinical studies. Hence, the 
modern methods of molecular modelling and biotechnology have provided us with 
suitable techniques to enable the design and production of inhibitors for effective 
proteinase inhibition therapy in the near future (Table V I ) . The major problem, 
however, which still has to be solved in this respect is the preparation of kilogram 
amounts of inhibitory drugs in highest purity for more extensive experimental and 
clinical studies. A successful outcome of these studies would imply the production 
of such inhibitors in sufficient amounts for common medical use. 
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