242 research outputs found

    Fast Algorithms For Josephson Junction Arrays : Bus--bars and Defects

    Get PDF
    We critically review the fast algorithms for the numerical study of two--dimensional Josephson junction arrays and develop the analogy of such systems with electrostatics. We extend these procedures to arrays with bus--bars and defects in the form of missing bonds. The role of boundaries and of the guage choice in determing the Green's function of the system is clarified. The extension of the Green's function approach to other situations is also discussed.Comment: Uuencoded 1 Revtex file (11 Pages), 3 Figures : Postscript Uuencode

    Political Regimes and Sovereign Credit Risk in Europe, 1750-1913

    Get PDF
    This article uses a new panel data set to perform a statistical analysis of political regimes and sovereign credit risk in Europe from 1750 to 1913. Old Regime polities typically suffered from fiscal fragmentation and absolutist rule. By the start of World War I, however, many such countries had centralized institutions and limited government. Panel regressions indicate that centralized and?or limited regimes were associated with significant improvements in credit risk relative to fragmented and absolutist ones. Structural break tests also reveal close relationships between major turning points in yield series and political transformations

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include

    Critical properties of two-dimensional Josephson junction arrays with zero-point quantum fluctuations

    Full text link
    We present results from an extensive analytic and numerical study of a two-dimensional model of a square array of ultrasmall Josephson junctions. We include the ultrasmall self and mutual capacitances of the junctions, for the same parameter ranges as those produced in the experiments. The model Hamiltonian studied includes the Josephson, EJE_J, as well as the charging, ECE_C, energies between superconducting islands. The corresponding quantum partition function is expressed in different calculationally convenient ways within its path-integral representation. The phase diagram is analytically studied using a WKB renormalization group (WKB-RG) plus a self-consistent harmonic approximation (SCHA) analysis, together with non-perturbative quantum Monte Carlo simulations. Most of the results presented here pertain to the superconductor to normal (S-N) region, although some results for the insulating to normal (I-N) region are also included. We find very good agreement between the WKB-RG and QMC results when compared to the experimental data. To fit the data, we only used the experimentally determined capacitances as fitting parameters. The WKB-RG analysis in the S-N region predicts a low temperature instability i.e. a Quantum Induced Transition (QUIT). We carefully simulations and carry out a finite size analysis of TQUITT_{QUIT} as a function of the magnitude of imaginary time axis LτL_\tau. We find that for some relatively large values of α=EC/EJ\alpha=E_C/E_J (1α2.25)1\leq \alpha \leq 2.25), the LτL_\tau\to\infty limit does appear to give a {\it non-zero} TQUITT_{QUIT}, while for α2.5\alpha \ge 2.5, TQUIT=0T_{QUIT}=0. We use the SCHA to analytically understand the LτL_\tau dependence of the QMC results with good agreement between them. Finally, we also carried out a WKB-RG analysis in the I-N region and found no evidence of a low temperature QUIT, up to lowest order in α1{\alpha}^{-1}Comment: 39 pages, 18 postscript figures, to appear in Phys. Rev.

    The superconductor-insulator transition in 2D dirty boson systems

    Full text link
    Universal properties of the zero temperature superconductor-insulator transition in two-dimensional amorphous films are studied by extensive Monte Carlo simulations of bosons in a disordered medium. We report results for both short-range and long-range Coulomb interactions for several different points in parameter space. In all cases we observe a transition from a superconducting phase to an insulating Bose glass phase. {}From finite-size scaling of our Monte Carlo data we determine the universal conductivity σ\sigma^* and the critical exponents at the transition. The result σ=(0.55±0.06)(2e)2/h\sigma^* = (0.55 \pm 0.06) (2e)^2/h for bosons with long-range Coulomb interaction is roughly consistent with experiments reported so far. We also find σ=(0.14±0.03)(2e)2/h\sigma^* = (0.14 \pm 0.03) (2e)^2/h for bosons with short-range interactions.Comment: Revtex 3.0, 54 pages, 17 figures included, UBCTP-93-01

    Projections from the paralemniscal nucleus to the spinal cord in the mouse

    Get PDF
    The present study investigated the projection from the paralemniscal nucleus (PL) to the spinal cord in the mouse by injecting the retrograde tracer fluoro-gold to different levels of the spinal cord and injecting the anterograde tracer biotinylated dextran amine into PL. We found that PL projects to the entire spinal cord with obvious contralateral predominance—420 neurons projected to the contralateral cervical cord and 270 to the contralateral lumbar cord. Fibers from PL descended in the dorsolateral funiculus on the contralateral side and terminated in laminae 5, 6, 7, and to a lesser extent in the dorsal and ventral horns. A smaller number of fibers also descended in the ventral funiculus on the ipsilateral side and terminated in laminae 7, 8 and, to a lesser extent in lamina 9. The present study is the first demonstration of the PL fiber termination in the spinal cord in mammals. The PL projection to the spinal cord may be involved in vocalization and locomotion

    Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

    Get PDF
    In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex

    Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites

    Get PDF
    Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions

    The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats

    Get PDF
    The aim of the present study was to investigate the effect of DSP4-induced noradrenaline depletion on learning and memory in a spatial memory paradigm (holeboard). Since Harro et al. Brain Res 976:209–216 (2003) have demonstrated that short-term effects of DSP4 administration include both noradrenaline depletion and changes in dopamine and its metabolites—with the latter vanishing within 4 weeks after the neurotoxic lesion—the behavioural effects observed immediately after DSP4 administration cannot solely be related to noradrenaline. In the present study, spatial learning, reference memory and working memory were therefore assessed 5–10 weeks after DSP4 administration. Our results suggest that the administration of DSP4 did not lead to changes in spatial learning and memory when behavioural assessment was performed after a minimum of 5 weeks following DSP4. This lack of changes in spatial behaviour suggests that the role of noradrenaline regarding these functions may be limited. Future studies will therefore have to take into account the time-course of neurotransmitter alterations and behavioural changes following DSP4 administration
    corecore