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We critically review the fast algorithms for the numerical study of two–dimensional Josephson
junction arrays and develop the analogy of such systems with electrostatics. We extend these
procedures to arrays with bus–bars and defects in the form of missing bonds. The role of boundaries
and of the guage choice in determing the Green’s function of the system is clarified. The extension
of the Green’s function approach to other situations is also discussed.

I. INTRODUCTION

The dynamical properties of Josephson junction arrays (JJAs) are currently the foci of several experimental and
theoretical investigations [1]. These arrays can now be routinely fabricated in several sizes and geometries, and the
characteristics of their junctions can be varied at will over a wide range of values [2]. A large body of high–precision
experimental data has consequently become available for JJAs in the presence of external magnetic fields [3–5]. On
the theoretical front, several insights into the behaviour of JJAs have come from numerical studies of the underlying
equations of motion as given by the resistively- and capacitively-shunted junction (RCSJ) model using input current
drives and defects, both controlled [6] and random [7]. With the size of experimental arrays increasing continuously,
and with the number of interesting effects best seen only in large arrays going up in equal measure, it has become
imperative to find ever more efficient algorithms for implementing the corresponding simulations, inclusive of all the
experimental conditions. An example of the latter for current–driven arrays is the presence of bus-bars, through which
the external current can be conveniently injected or withdrawn.

To understand the problem which these algorithms must address, we recall that in the RCSJ model, the total current,
iij , (inclusive of external drives where applicable) flowing through the junction between sites i and j, is viewed as
consisting of three ‘channels’ in parallel: superconductive, resistive ( or ohmic) and capacitive. The currents in each
of these channels can be expressed in terms of the phase difference, θij = θi − θj , across the junction. This leads to
the following equation for the evolution of the latter in time:

Ch̄

2e

d2θij

dt2
+

h̄

2eR

dθij

dt
+ Ic sin θij = iij (1)

Here C, R and Ic are the shunt–capacitance, shunt–resistance and critical current of the junction respectively. We
note that Eq.(1) holds under assumptions of zero temperature, zero magnetic field and infinite perpendicular magnetic
penetration depth. The last of these allows us to neglect self–induced magnetic fields.

Using total current conservation (TCC) at each site [8], we can write

∑

〈ij〉

βc
d2θij

dτ2
+

dθij

dτ
+ sin θij = Iext

i ∀i (2)
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where Iext
i = iext

i /Ic is the normalised current being fed to or extracted from the array site i (see Fig. ), βc =
2eIcR

2C/h̄ is the McCumber–Stewart parameter and τ = t(2eIcR)/h̄ is the time measured in units of the characteristic
period ω−1

c = h̄/(2eIcR). The summation on j, over the nearest neighbours of i, can alternatively be expressed in
terms of a multiplication by the discrete laplacian, G−1

0 . Eq.[2] then assumes the matrix form

∑

j

(

G−1
0

)

ij
θ̈j = β−1

c [Iext
i −

∑

〈ij〉

θ̇ij + sin θij ] = −di (3)

If we set θi = xi and θ̇i = yi, the complete set of dynamical equations reads
(

G0
−1

)

ij
ẏj = −di([x], [y]) and ẋi = yi.

For the overdamped case, corresponding to βc = 0, the relevant equations are

∑

j

(

G−1
0

)

ij
θ̇j = −di (4)

where −di is now given by Iext
i −

∑

〈ij〉 sin θij but G−1
0 is, of course, the same as in Eq.(3).

It follows that for an Nx × Ny ≡ N array each integration time step of Eq.(4) has a complexity O(N2). This is

because at every upgradation of the N state variables, θ̇, in the under–, and θ, in the over–damped case, the constant
N × N matrix G0 has to be multiplied by the divergence vector [d]. It was first noticed by Eikmans and Himbergen
[9] that the form of the G−1

0 is such that this multiplication can actually be carried out in O(N lnN) steps. The
procedure was subsequently improved upon by Dominguez et al. [7] who combined the fast-fourier transformation
used by Eikmans et al. with the method of cyclic reduction to achieve a roughly 30% increase in speed.

It is noteworthy that these algorithms are applicable even in the presence of an external magnetic field. Indeed, the
application of a field, B0ẑ, perpendicular to the array transforms the phases θij into the gauge-invariant combinations

θij + 2πAij where Aij = 1/φ0

∑j
i

~A · ~dl, ~A is the vector potential and φ0 = h̄/(2e) is the elementary flux quantum
threading a plaquette. This transformation clearly affects only the divergence term, and leaves untouched the matrix
G−1

0 , on whose form the algorithms are based. Similarly, white noise, which is taken into account by introducing
a noise current into Eq.(3), also modifies only the divergence and hence does not affect the applicability of these
algorithms. The statement continues to hold even if we grade each bond, i.e. make the R and Ic junction–dependent
[10].

In this paper we extend these fast algorithms firstly to arrays with busbars and secondly to those with defects in the
form of missing bonds. As has already been mentioned, busbars often form the current injection and/or extraction
edges of experimental arrays. In experiments involving vortices, which are repelled by busbars, these have been
used to produce collimated vortex–streets [11]. The dynamics of vortices have also been investigated with one edge
shorted by a single busbar [12]. Arrays with defects have likewise arisen in a number of contexts. The breakdown of
superconductive flow in current–driven arrays with linear defects, for example, has been investigated in some detail.
The exploration of the multiple–vortex sector, which arises in this study, requires running on large arrays and is all
but impossible without the algorithm we discuss below [13]. Defects can also be used to provide a collimated beam
of vortices [14].

The paper is organised as follows. In section II, we present a simplified derivation of the Eikmans–Himbergen
algorithm and interpret all the key equations in the familiar language of electrodynamics. Apart from being more
transparent, our derivation clarifies the role of boundaries and the connection between the lattice and continum
descriptions of the systems being studied. These insights are used in section III to generalize this algorithm to arrays
with busbars. The case of single busbar forces us to resort to the technique of cyclic reduction, which we consequently
discuss at this point. In section IV, we extend these algorithms to JJAs with defects, created by eliminating or adding
bonds. Section V contains a summary and discussion of our results.

II. THE EIKMANS–HIMBERGEN ALGORITHM

A. Preliminaries

All efficient algorithms for the numerical integration of Eq.(4) make essential use of the properties of the discrete
laplacian, G−1

0 . We thus begin by listing the more important properties of this matrix. From its definition (as
given by Eqs. (3 and 4), it follows that G−1

0 specifies the connectivity between different sites. More precisely,
(

G−1
0

)

ij
=

(

G−1
0

)

ji
= −1 for i 6= j (site i connected to site j) and 0 otherwise. The diagonal element

(

G−1
0

)

ii
= total

number of points to which the site i is connected, and hence Tr(G−1
0 ) is twice the number of bonds in the network.
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Clearly, G−1
0 is real and symmetric. As a result, its eigenvalues are real and its eigenbasis complete in the N–

dimensional space of states. Furthermore, det(G−1
0 ) = 0. This can be deduced as follows. We first note that

since Eq.(2) involves only the phase differences (and their time derivatives) it is invariant with respect to the global

transformation θ̇i → θ̇i + α(τ) ∀i. Substituting this into Eq.(4), we have

∑

j

(

G−1
0

)

ij
(θ̇j + α̇(τ)) = −di =

∑

j

(

G−1
0

)

ij
θ̇j

This implies that α̇(τ)
∑

j

(

G−1
0

)

ij
= 0 ∀i. I.e., if we fix i and sum over all the columns j, we get zero. (The same

is true, of course, if we fix j and sum over i since the matrix is symmetric). Hence det(G−1
0 ) = 0 and only (N − 1) of

the N equations in Eq.(2) are independent. (We could, alternatively, note that (Ψ0)i = 1∀i is an eigenvector of G−1
0

with eigenvalue 0).

To explicitly evaluate θ̇i from θi we have to eliminate the extra degree of freedom. For what immediately follows,
the most convenient choice is

∑

i θ̇i = 0. Eq.(4) is then replaced by

∑

j

(

G−1
0

)

ij
θ̇j = −Di (5)

where Di = di, i = 1 · · · (N − 1) and DN = 0 while
(

G−1
0

)

ij
=

(

G−1
0

)

ij
i = 1 · · · (N − 1), j = 1 · · ·N and

(

G−1
0

)

Nj
= 1∀j. Moreover, the vector [d] must satisfy

∑

i di = 0 as can be seen by performing an additional sum over

i in Eq.(4) and using the fact that
∑

i (G−1
0 )ij = 0. For JJAs this condition is automatically satisfied since θ̇ij and

sin θij are odd functions of their arguments and the net external current fed to the array is zero.

One can, in principle, invert G−1
0 and determine

[

θ̇
]

from [D]. This is the usual O(N2) process. We shall refrain

from adopting this procedure and return, instead, to working with Eq.(2).
In doing so, we shall find it useful to keep in mind some electrostatic analogs of the equations we happen to be

dealing with. These emerge clearly if we write the current conservation equation at the site k as

Itotal
k,µ = Is

k,µ + In
k,µ + Iext

k,µ (6)

Here µ = 1, 2 represents the x and y directions respectively. Furthermore, Itotal
k,µ , Is

k,µ = sin ∆µθk, In
k,µ = ∆µθ̇i and

Iext
k,µ are the total, superconducting, normal and external currents, respectively, at node k in the µth direction. Using

the TCC condition, ∇ · Itotal
i = 0, we have

∇2θ̇i = ∇ ·
(

~Is
i + ~Iext

i

)

(7)

On comparing Eq.(7) with the Laplace Equation ∇2φ = −ρtotal/ǫ0 and recalling that ρtotal = ρfree + ρbound, we
arrive at the following correspondences

~D(~r) ≡ ~Iext
i (8)

−~P (~r) ≡ ~Is
i (9)

φ(~r) ≡ θ̇i (10)

Thus the condition imposed above on the θ̇i is nothing other than a choice of reference potential or gauge. We,
furthermore, note that the JJA thought of as a dielectric medium is highly non–linear. Indeed, Pk,µ ≡ sin(−

∫

Ek,µdt),

where Ek,µ = ∆µθ̇k is the µth component of the electric field at site k. This is to be contrasted with ~P (~r) ∝ ~E(~r) for
a linear dielectric.

B. The O(N lnN) procedure

Going back to Eq.(3), G−1
0 can alternatively be inverted by defining the Green’s function [see Jackson]

G̃(~r, ~r ′) =
∑

λ~k
6=0

1

λ~k

Ψ~k(~r)Ψ†
~k
(~r ′) (11)
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where λ~k are the eigenvalues and Ψ~k(~r) the orthonormalised eigenvectors of G−1
0 , i. e.

G−1
0 Ψ~k(~r) = λ~kΨ~k(~r) (12)

and ~r are points on the lattice. More explicitly, the site coordinates (xi, yi) ≡ ~ri referred to an origin located at the
lower left hand corner of the lattice, are related to the site indices i used earlier by i = xi + yiNx + 1. We note that
to get a well-defined function, we must explicitly remove from the sum in Eq.(11), the zero mode, which necessarily
exists, since G−1

0 is singular.
The removal of this mode, however, creates a slight problem. Indeed, if we premultiply by G−1

0 and use Eq.(12) we
get

∑

~r ′′

G−1
0 (~r, ~r ′′)G̃(~r ′′, ~r) =

∑

~k 6=0

1

λ~k

λ~kΨ~k(~r)Ψ†
~k
(~r ′) (13)

=
∑

~k

Ψ~k(~r)Ψ†
~k
(~r ′) − Ψ0(~r)Ψ

†
0(~r

′)

= δ(~r − ~r ′) − 1
√

LxLy







1
...
1







1
√

LxLy

(1, 1 · · · 1)

which in discretised form is
∑

j

G̃ij

(

G−1
0

)

jk
= δik − 1

LxLy
(14)

Now if we multiply Eq.(4) from the left by G̃ we get θ̇i −
∑

i
θ̇i

LxLy
which reads just right, viz.

θ̇i = G̃ijdj (15)

provided the θ̇i satisfy
∑

i θ̇i = 0. In other words, with an appropriate gauge choice, G̃ does allow us to invert G−1
0 .

Indeed, the requirement that it does so fixes the gauge uniquely. It is to be noted that Eq.(15) involves [d] and not
[D].

The function, G̃(~r, ~r ′), can be easily evaluated for a periodic lattice. The form of the operator G−1
0 (~r, ~r ′), in this

case, is given by

G−1
0 (~r, ~r ′) = 4δ~r,~r ′ − δ~r±êx,~r ′ − δ~r±êy,~r ′ (16)

It is easily checked that the normalised eigenvectors are of the form exp i~k·~r√
LxLy

and correspond to the eigenvalues

λ~k = 4 − 2 coskx − 2 cos ky (17)

We note that λ~k=0 = 0.
Due to the rectangular periodicity of the lattice the eigenvectors must satisfy Ψ~k(~r) = Ψ~k(~r + Liêi) i = x, y. To

fulfil this condition, the wavevectors must in turn be quantised as ki = (2nπ)/Li i = x, y and n = 0, 1, · · · (Li−1).
The Green’s function of interest is consequently

G̃(~r, ~r ′) =
1

LxLy

∑

~k 6=0

1

4 − 2 cos kx − 2 cos ky
exp i~k · (~r − ~r ′) (18)

We can now estimate the number of steps required to evaluate
∑

~r ′ G̃(~r, ~r ′)d(~r ′). The sum over ~r ′ is a fourier

transform and can be carried out in NlnN steps to produce d(~k). Then come the N multiplications λ~kd(~k) followed

by the sum over ~k, which has the form of an inverse fourier transform, and requires an additional NlnN steps, making
a grand total of N(2lnN + 1) multiplications.

Quite generally then, θ̇(~r) can be evaluated from Eq.(15) by (i) creating an Lx×Ly matrix G0(~k) = N~k/λ~k where N~k

are the normalisation factors due to Ψ~k(~r), (ii) evaluating d(~k) =
∑

~r ′ d(~r ′)Ψ~k(~r ′), this being the forward transform

(W), (iii) computing d′(k) = G0(~k)d(~k), and (iv) taking the 2-D inverse transform W̃ to get θ̇(~r) =
∑

~k d′(~k)Ψ~k(~r). For

certain types of transforms and certain values of Lx and Ly, W and W̃ can each be performed by matrix decomposition
or row–column techniques with a complexity O(N lnN). We now turn to a discussion of this procedure in the context
of finite arrays.
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C. The Imposition of Boundaries

For a finite array, the general form of G−1
0 (Eq.(16)) is modified since now fewer than four bonds meet at all sites

on the boundary (see Fig.(1)). For non–corner points on the left edge of the array for example, the operator has the
form 3δ~r,~r ′ − δ~r+êx,~r ′ − δ~r±êy,~r ′ . However, if Ψ satisfies Ψ(x0, y) − Ψ(x0 − 1, y) = 0 ∀y along this edge, one can

continue using the periodic form of G−1
0 because then (4δ~r,~r ′ − δ~r±êx,~r ′ − δ~r±êy,~r ′)Ψ(x0, y) automatically reduces to

(3δ~r,~r ′ − δ~r+êx,~r ′ − δ~r±êy,~r ′)Ψ(x0, y). We thus see that the finiteness of the array imposes the following boundary
conditions on Ψ

Ψ(x0, y) − Ψ(x0 − 1, y) = 0 ∀y (19a)

Ψ(x, y0) − Ψ(x, y0 − 1) = 0 ∀x (19b)

Ψ(xL, y) − Ψ(xL + 1, y) = 0 ∀y where xL = x0 + Lx − 1 (19c)

Ψ(x, yL) − Ψ(x, yL + 1) = 0 ∀x where yL = y0 + Ly − 1 (19d)

where (x0, y0) and (xL, yL) are the diagonally opposite corners of the rectangular lattice. It is amusing to note that
the left–hand side of Eqs.(19a- 19d) are the discrete derivatives of Ψ(x, y) along the edges x = x0,y = y0,x = xL and
y = yL, respectively. Thus the finite case poses for us a discretised Neumann boundary value problem.

Furthermore, we note that λ~k (see Eq.(17)) has the symmetries of the square, i.e. λkx,ky
= λ±kx,∓ky

= λ−kx,−ky
.

Thus any linear combination of the corresponding eigenvectors,

Ψ(x, y) = a1 exp i(kxx + kyy) + a2 exp i(−kxx + kyy) (20)

+a3 exp i(kxx − kyy) + a4 exp i(−kxx − kyy)

is an eigenvector of G−1
0 with the same eigenvalue λ~k. To find the specific linear combination, which satisfies the

boundary conditions given above, we need merely impose each of Eqs.(19a-19d) in turn. Eq.(19a) can be satisfied by
choosing x0 = 1/2, a1 = a2, a3 = a4 and the resulting wavefunction is

Ψ(x, y) = 2a1 cos kxx exp(ikyy) + 2a3 cos kxx exp(−ikyy) (21)

Subjecting Eq.(21) next to the constraint Eq.(19b), we get

Ψ(x, y) = 4a1 cos kxx cos kyy (22)

where y0 is now required to be 1/2 as well. The fact that x0 = y0 = 1/2 means that the origin of coordinates is chosen
on the dual lattice and both coordinates of every lattice point are half integers.

The boundary conditions Eq.(19c) and Eq.(19d) at the right and upper edges of the array can be satisfied by

imposing a quantisation condition on ~k. Indeed, using Eq.(19c) we have

− 8a1 cos kyy sin(kxLx) sin(
kx

2
) = 0 ∀y (23)

whereby kx = nxπ/Lx, nx = 0, 1, · · · , Lx − 1. Similarly using Eq.(19d) ky = nyπ/Ly, ny = 0, 1, · · · , Ly − 1.
Thus finally, the orthonormalised wavefunctions we are looking for are

Ψ(x, y) =

√

2

LxLy

√

(

1 − 1

2
δkx,0 −

1

2
δky,0

)

cos(kxx) cos(kyy) ~k 6= 0 (24)

The resulting Green’s function to be used in Eq.(11) is thus [9]

G̃(~r, ~r ′)
4

LxLy

∑

~k 6=0

(1 − 1
2δkx,0 − 1

2δky,0)

4 − 2 coskx − 2 cosky
cos(kxx) cos(kyy) cos(kxx′) cos(kyy′) (25)

The action of this Green’s function on a uniform current drive, Iext(x, y) = Iext(δx,x0
− δx,xLx

) can be rigorously
shown to be [15]

∑

y′

G̃(x, y, x′, y′)I(x′, y′) = I(
Lx

2
− x) (26)
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III. INCLUSION OF BUS–BARS

Using the techniques of the previous section we generalise the procedure to arrays with either a single or a double
busbar (henceforth referred to as SBB and DBB respectively).

In the SBB case, the busbar is normally placed along the current–extraction–edge (see Fig.(2)). The corresponding

θ and θ̇ are zero for all time i.e. they do not evolve. The drive edge is however open and can be connected to any

kind of current profile. Such an array, with a linear profile, has been used previously to study vortex dynamics [12].
On the other hand, an DBB array has shorts along a pair of parallel edges (say those at x = x0 and x = xL + 1 as in
Fig(3)). In this case, no current can be injected in the x– direction but the y– direction is available to an arbitrary
current drive. Such an array with electrically connected busbars could be used to simulate e.g. the “channel” in the
experiments conducted by Van-der-Zant et al. [11].

We note that by setting the θ̇ along the busbar to zero and measuring all other θ̇’s with respect to these preassigned
variables, we are unambigiously fixing the gauge. Furthermore, since the wavefunction in a rectangular system is
separable, i.e. Ψ(x, y) = Ψ1(x)Ψ2(y), any change in the boundary conditions along the x– direction, has no impact
on Ψ2(y), which therefore continues to have the form derived in Setion II, viz.

Ψ2(y) =

√

2

Ly

√

(

1 − 1

2
δky ,0

)

cos kyy

The altered b.c.s however enter crucially into the determination of Ψ1(x) and hence in to that of Ψ(x, y).

A. Arrays with a Single Bus-bar

For the SBB case, we have the following b.c.s

Ψ1(x0) − Ψ1(x0 − 1) = 0 ∀y (27a)

Ψ1(xL + 1) = 0 ∀y where xL = x0 + Lx − 1 (27b)

The second of these results from the fact that the wavefunction must vanish at the shorted edge as discussed above.
Condition Eq.(27a) fixes the form of Ψ1(x) to be ∼ cos kxx where x is a half–odd integer, while Eq.(27b) quantises
kx: kx = ((2nx + 1)π)/(2Lx + 1) nx = 0, 1, · · · , Lx − 1. The normalisation constant is fixed by the requirement that

A2
∑Lx

p=1 cos2 kx(p − 1
2 ) = 1. Thus

Ψ1(x) =

√

(

2

Lx + 1
2

)

cos kxx (28)

and hence the Green’s function G̃ for the case of a single busbar is

G̃(~r, ~r ′) =
4

Ly(Lx + 1
2 )

∑

~k

(1 − 1
2δky,0)

4 − 2 coskx − 2 cos ky
cos(kxx) cos(kyy) cos(kxx′) cos(kyy′) (29)

This G̃ coincides with the G0 for this case because the zero–mode is absent.
The action of G̃ on a uniform input drive Iext(x, y) = Iextδx,x0

can, as in the case of Eq.(26), be exactly shown to
be [15]

∑

y′

G̃(x, y, x′, y′)I(x′, y′) = I(Lx − x +
1

2
) (30)

Although a 1D Fast Cosine transform can be used along the y– axis, this cannot be done for the x–direction, since
no fast Cosine transform of the form

C(m) =

L−1
∑

n=0

C̃(n) cos
(2n + 1)(2m + 1)π

(4L + 2)

6



is known to exist [16]. If we resort to usual matrix multiplication along êx, the algorithm becomes O(2NNx +
2N lnNy + N) in complexity and is useful only if Ny >> Nx.

A much more efficient approach is to combine the FCT along êy with cylic reduction along the x–direction. This
can be carried out as follows [17]. We begin by writing Eq.(4) as

θ̇x−1,y + θ̇x,y′Ty′,y + θ̇x+1,y = −dx,y (31)

where the operator Ty′,y is defined to be Ty′,y = δy′,y−1 + δy′,y+1 − 4δy′,y Taking the Cosine transform along the y–

direction i. e. setting θ̇x,y =
∑

ky
θ̇x,ky

cos kyy, we find that

θ̇x,y′Ty′,y =
∑

ky

2(cos ky − 2)θ̇x,ky
coskyy (32)

As a consequence the y– cosine transform of θ̇x,y satisfies

θ̇x−1,ky
+ λ(ky)θ̇x,ky

+ θ̇x+1,ky
= −dx,ky

(33)

where we have used λ(ky) = 2(cos ky − 2). Writing Eq.(33) thrice with x set equal to x− 1, x and x + 1 respectively,
multiplying the second of these equations by −λ(ky) and adding all the three of them together, we get

θ̇x−2,ky
+ λ(1)(ky)θ̇x,ky

+ θ̇x+2,ky
= −dx−1,ky

+ λ(ky)dx,ky
− dx+1,ky

= −d
(1)
x,ky

(34)

where λ(1)(ky) = 2 − (λ(ky))
2
. We note that the x values occurring in Eq.(34) increase in steps of 2 as opposed to 1

in Eq.(33). The two equations are, however, of the same form. We can thus use the reduction procedure repeatedly
to get equations with x–values increasing in steps of 4, 8, · · · until after m stages (2m = Lx), we end up with a single
equation for the central line of variables:

λ(m−1)(ky)θ̇x0+Lx/2,ky
= d

(m−1)
x0+Lx/2,ky

− θ̇x0,ky
− θ̇xL+1,ky

(35)

The λ(p)(ky) and d
(p)
x,ky

occurring in these equation are defined by the recursive relations:

λ(p)(ky) = 2 −
(

λ(p−1)(ky)
)2

(36)

d
(p)
x,ky

= d
(p−1)
x−2p−1,ky

− λ(p−1)(ky)d
(p−1)
x,ky

+ d
(p−1)
x+2p−1,ky

(37)

Thus, if θ̇x0,ky
and θ̇xL+1,ky

are known, then θ̇x0+Lx/2,ky
can be immediately deduced. The knowledge of θ̇x0+Lx/2,ky

leads to that of θ̇x0+Lx/4,ky
and θ̇x0+3Lx/4,ky

which in turn determine θ̇x0+qLx/8,ky
(q = 1, 3, 5, 7) etc. As for the

starting values, θ̇xL+1,ky
= 0 ∀ ky, since this is the y–cosine transform of θ̇x,y for x = xL + 1, i.e. taken along

the busbar. θ̇x0,ky
must however be determined by explicit multiplication. Fortunately, since we know the relevant

Green’s function explicitly, we can carry this out in O(N) steps, by taking the cosine transform of Eq.(15):

θ̇x0,ky
=

4

Ly(Lx + 1
2 )

∑

kx

∑

x′

(

1 − 1
2δky,0

)

4 − 2 coskx − 2 cosky
cos kxx0 cos kxx′dx′,ky

(38)

The number of steps required to evaluate all the higher–order divergences d
(p)
x,ky

, p = 1, · · ·m−1 used by the method

can be shown to be Ny {(Nx/2) − ln2 Nx} [15] . With these divergences in hand, the cyclic determination of θ̇x,ky

has a complexity O(N). Adding to all this, the number of multiplications involved in carrying out the forward and
backward FCTs in the y–direction, we conclude that the entire procedure can be carried out in O(2N lnNy + 2N +
N/2 − Ny ln2 Nx) steps.
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B. The Case of a Double Bus-bar

Turning now to the DBB case, we note that the wave-function, Ψ1(x), must now satisfy the following b.c.s

Ψ1(x0) = 0 ∀y (39a)

Ψ1(xL + 1) = 0 ∀y (39b)

Condition Eq.(39a) fixes the form of Ψ1(x) to be ∼ sin kxx where x is an integer while condition Eq.(39b) restricts

kx to the values (nxπ)/(Lx + 1), nx = 1, · · ·Lx. The normalisation constant, A, is fixed by A2
∑Lx

p=1 sin2 kxp = 1.
The resulting orthonormalised wavefunction is then

Ψ1(x) =

√

2

Lx + 1
sin kxx (40)

and hence G̃ for an array with a double bus–bar is

G̃(~r, ~r ′) =
4

Ly(Lx + 1)

∑

~k

(1 − 1
2δky,0)

4 − 2 coskx − 2 cosky
sin(kxx) cos(kyy) sin(kxx′) cos(kyy′) (41)

In this case, the transformations along both directions are amenable to fast, i.e. O(N lnN), procedures provided
Lx + 1 and Ly are both integral powers of 2.

IV. DEFECTS

We move on next onto arrays containing defects in the form of broken bonds. As mentioned in Sec. I, arrays of
this sort have recently attracted the attention of several groups. Xia and Leath showed that in contrast to networks
of resistors [18], where breakdown emanates from the most critical defect, JJAs with missing bonds do not become
resistive, the moment any one junction turns critical. Cohn et al. [19] showed that defects exert an additional pinning
force on a vortex placed in the system. Datta et al. [13] demonstrated the existence of multiple vortex sectors in the
steady state configurations of the system. They did so by running on large arrays using a modified version of the
above algorithm which we now describe in detail.

The evolution equation θ̇ for an array containing a single missing bond between the sites k ≡ (x0, y0) and (k +1) ≡
(x0 + 1, y0) can be written in matrix notation ( see Eq.(2)) as

(G−1
0 + h)[θ̇] = [d] (42)

where G−1
0 is the discrete Laplacian with free, periodic, SBB or DBB boundary conditions and h is given by

hk,k = hk+1,k+1 = 1 (43)

hk,k+1 = hk+1,k = −1

hi,j = 0 i, j 6= k, k + 1

Multiplying Eq.(42) with G̃ from the left we get

(I + A)[θ̇] = G̃[d] = ξ (44)

where A = G̃h and I is the identity matrix. The process of determining G̃[d] = ξ, as already been outlined and can

be executed in N lnN steps. One then needs to evaluate (1 + A)−1ξ efficiently. To this end, we note that A has the
form

Aij = xi(δj,k − δj,k+1) (45)

where the numbers xi are got by explicitly by multiplying G0 and h. From Eq.(45) it follows that

Aq = A(∆e)
q−1

(46)
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where ∆e = xk − xk+1. In fact, ∆e is the only non-zero eigen value of the matrix A and for the case discussed in
Section II C it is given by

∆e =
4

LxLy

∑

~k 6=0

(

1 − 1
2δkx,0 − 1

2δky,0

)

4 − 2 coskx − 2 cos ky
(cos(kx(x0 + 1)) − cos(kxx0))

2
cos2(kyy0) (47)

where ki = (niπ)/Li, ni = 0 . . . Li − 1 and i = x, y. From Eq.(46) it follows that

(I + A)
−1

= I − A + A2 − A3 + · · · = I − A

1 + ∆e
(48)

Since the constant matrix R = −A/(1 + ∆e) contains only two non–zero columns, which are moreover negatives of

each other, [θ̇] can be determined from ξ in just N multiplicative steps.
The extension of the above procedure to the case of a linear defect [6] consisting of n broken bonds is straight

forward as each additional defect introduces into h a 2 × 2 diagonal block of the form given in Eq.(43). In this case,
the series (Eq.(48)) cannot be summed analytically due to the presence of cross terms. An analytic summation is,
however, unnecessary. It is sufficient to note that

Aij = x1
i (δj,k1

− δj,k1+1) + x2
i (δj,k2

− δj,k2+1) + · · ·xn
i (δj,kn

− δj,kn+1) (49)

for bonds missing between ki and ki+1 (i = 1, 2 · · ·n), and that consequently Aq has the same form as above. The
numbers xp

i ’s occurring in Aq are of course q–dependent. It follows from this that the series can once again be written
in the form

(I + A)
−1

= I + R (50)

where R is a constant matrix of the form given in Eq.(49). Clearly the action of R on a vector of length N can be
determined in nN multiplicative steps. The overall complexity of the algorithm in this case is thus O(N lnN + nN).
Since the number of broken bonds required to observe various breakdown phenomena [6] is much smaller than N , this
results in a very large saving in the time required to perform the computations.

It is interesting to note that the Green’s function for the broken bond system Gbb satisfies the Dyson’s equation
[20]

Gbb = G̃ + G̃(−h)Gbb (51)

The matrix (−h) is thus the analog of the potential due to an impurity in an otherwise perfect lattice and the case
of the single defect is the analog of the δ function impurity at a given site in the system.

The procedure developed above is for the situation where no pair of broken bonds has any site in common. This
ensures that the block matrices introduced in h are always 2 × 2 rather than m × m, m > 2 The general case can be
dealt with in a similar manner albeit with an increase in complexity. Lastly, bonds can be added in the interior of
the network rather than being eliminated since this does not violate the constraint

∑

i di = 0.

V. SUMMARY AND DISCUSSION

To summarize, we have extended the Eikman–Himbergen algorithm to a number of practically occurring situations.
In particular, we have extended it to the case of a bus–bar placed along one edge of a rectangular array as also to
that of electrically connected bus–bars placed along two parallel edges. Finally we have shown that our simulation
can be carried out, with only a marginal increase in complexity, for bonds eliminated from or added to the array. In
all cases, the open edges can be connected to current sources having any profile whatsoever.

The algorithms for bus–bars as also for perfect arrays subject to magnetic fields, noise, and/or current drives, all
involve Green’s functions specific to the lattice in question. The Green’s function of interest can straightly–forwardly be
constructed once the eigen–basis of the corresponding connectivity matrix or discrete Laplacian has been determined.
We have shown that this eigen–basis consists precisely of those linear combinations of eigenfunctions of the connectivity
matrix for a periodic lattice, which satisfy an appropriate set of boundary conditions.

The addition and removal of bonds introduces additional boundaries often in the interior of the array. As a result our
earlier procedure becomes invalid. An island of defects created at the center of the array, e.g., defines a lattice version
of the sinai billiard problem,which classically has only chaotic solutions. However if the number of bonds eliminated is

9



small, Green’s function techniques which have been extensively used to study disordered solids can be very effectively
applied. We have shown that this techniques yields an O(N ln N +nN) algorithm. The extensions of such algorithms

to the case of 3D arrays is easy since the corresponding eigen–vectors are specified to be either exp(i~k ·~r) or cos(kxx)
depending on whether the boundaries are periodic or free boundaries respectively. The eigen–values are now changed
to 8 − 2coskx − 2 cosky − 2 cos kz. In this case, one has to obviously use 3-D transforms.

It is also worth noting that many of the expressions we have derived can be written in terms of continous functions,
which are, of course, to be evaluated or sampled only at points belonging to the array. Now if we turn this observation
around and think of the discrete lattice as being produced by the sampling of the continuous 2–D waveform, we
make contact with a long-standing problem in electrical engineering, viz. that of the digitisation and subsequent
recovery of band-width limited analog wave-forms. Usually such waveforms are processed as rectangular spaced
arrays i. e. they are periodically sampled along the two orthogonally independent variables. However, one can also
use hexagonal sampling [21]. Once discretised, the waveforms can be processed as arrays of numbers x(n1, n2) by
the computer where (n1, n2) is a discrete point on which the observable x has some value. The periodicity of the
observable x(n1, n2) is important as it specifies the eigenfunctions associated with the system. The matrix G−1

0 has
precisely the information about the chosen sampling raster and the periodicity of the lattice. The raster defines
the total number of nearest neighbours of a general site (n1, n2) while the periodicity (or finiteness) of the lattice
decides the connectivity of the sites at the boundary of the network. The eigenfunctions used in both cases are the
same. Indeed, the analogy goes deeper and we can think of the JJA itself as a latticized version of the continuum
case (superconducting islands embedded in a normal background much as the Abrikosov lattice consists of normal
regions embedded in a superconducting background). Finally, since hexagonally sampled waveforms can be recovered
in O(N lnN) steps, this analogy opens up the very interesting possibility of working out O(N lnN) algorithm for a
triangular JJA. This and other related issues are currently under active investigation.
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Figure Caption

Fig.1 The figure shows the geometry with currents I being injected and extracted at x = x0 and x = xLx
respectively.

The • represents the superconducting islands and the line joining them represents a junction.

Fig.2 The figure shows the single bus–bar geometry with currents I being injected x = x0. The short is at x = xLx+1.
Note that one can use any current profile in this case.

Fig.3 The figure shows the double bus–bar geometry with shorts at x = x0 and x = xLx+1.
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