666 research outputs found
A Mad Stone
Here and there is found a man possessing a pebble for which he claims the remarkable power of preventing hydrophobia when applied to the wound made by a mad dog. We have been unable to find any record of a scientific examination of a mad stone or a scientific test of its properties. This may be partly accounted for by the rarity of the stone, and the high esteem in which they are held by their owners. A popular idea is that they are formed by accretion in a deer\u27s stomach
IT investment evaluation: why hasn ’t it become an organization routine?
In this study we attempt to understand why formal evaluations of IT investment projects have not yet become an organizational routine. Using survey data gathered from business and IT managers in Sweden, we tested the research hypotheses about the factors influencing the attitudes and behaviour of managers towards using formal evaluation methods based on the theory of planned behaviour. We found that the intent to use formal evaluation methods in an organization is determined by the attitudes of the managers towards the formal methods, the common beliefs of the organization about the formal methods, and the perceived ability to perform formal evaluations. Interestingly, we found that the attitudes toward formal methods are determined mostly by the perceived usefulness of the methods and not by the perceived ease of use of these methods, suggesting that the decision to use formal methods is most likely based on rational analyses rather than individual preferences. We also found that awareness and selfefficacy contribute to the use of formal methods via influences on organizational beliefs and perceived ability to perform evaluation tasks. These findings provide some interesting managerial implications for advocating the use of formal methods in organizations
Extracellular microRNAs in Relation to Weight Loss—A Systematic Review and Meta-Analysis
Obesity is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. Even a modest weight loss of 5–15% improves metabolic health, but circulating markers to indicate weight loss efficiency are lacking. MicroRNAs, small non-coding post-transcriptional regulators of gene expression, are secreted from tissues into the circulation and may be potential biomarkers for metabolic health. However, it is not known which specific microRNA species are reproducibly changed in levels by weight loss. In this study, we performed a systematic review and meta-analysis to investigate the microRNAs associated with weight loss by comparing baseline to follow-up levels following intervention-driven weight loss. This systematic review was performed according to the PRISMA guidelines with searches in PubMed and SCOPUS. The primary search resulted in a total of 697 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 27 full-text articles, which were evaluated for quality and the risk of bias. We performed systematic data extraction, whereafter the relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: miR-26a, miR-126, and miR-223 were overall significantly increased following weight loss, while miR-142 was significantly decreased after weight loss. miR-221, miR-140, miR-122, and miR-146 were not significantly changed by intervention-driven weight loss. These results indicate that few miRNAs are significantly changed during weight loss.</p
Does wearing a non-medical face mask cause changes in cerebral hemodynamics?
We present a study investigating the effect of non-medical face masks (FFP2 and surgical) on cerebral hemodynamics measured by transcranial hybrid diffuse optics, and on systemic physiology in 13 healthy adults (age: 23-33 years)
Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)
The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in
March-April 2013 and January 2015, combined with the improved observational
capabilities of submillimeter facilities, offered an opportunity to carry out
sensitive compositional and isotopic studies of the volatiles in their coma. We
observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January
2015, and with the Odin submillimeter space observatory on 29 January - 3
February 2015. We detected 22 molecules and several isotopologues. The
HO and HO production rates measured with Odin follow a
periodic pattern with a period of 0.94 days and an amplitude of ~25%. The
inferred isotope ratios in comet Lovejoy are O/O = 499 24
and D/H = 1.4 0.4 in water, S/S = 24.7
3.5 in CS, all compatible with terrestrial values. The ratio
C/C = 109 14 in HCN is marginally higher than terrestrial
and N/N = 145 12 in HCN is half the Earth ratio. Several
upper limits for D/H or 12C/13C in other molecules are reported. From our
observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio
in an Oort Cloud comet that is not larger than the terrestrial value. On the
other hand, the observation of the same HDO line in the other Oort-cloud comet,
C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous
measurements of D/H in cometary water, this illustrates that a diversity in the
D/H ratio and in the chemical composition, is present even within the same
dynamical group of comets, suggesting that current dynamical groups contain
comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic
A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data
Spectral line surveys are useful since they allow identification of new
molecules and new lines in uniformly calibrated data sets. Nonetheless, large
portions of the sub-millimetre spectral regime remain unexplored due to severe
absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the
measurements presented here is to cover wavelength regions at and around 0.55
mm -- regions largely unobservable from the ground. Using the Odin
astronomy/aeronomy satellite, we performed the first spectral survey of the
Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with
rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size
telescope, equipped with four cryo-cooled tuneable mixers connected to broad
band spectrometers, was used in a satellite position-switching mode. Two mixers
simultaneously observed different 1.1 GHz bands using frequency steps of 0.5
GHz (25 hours each). An on-source integration time of 20 hours was achieved for
most bands. The entire campaign consumed ~1100 orbits, each containing one hour
of serviceable astro-observation. We identified 280 spectral lines from 38
known interstellar molecules (including isotopologues) having intensities in
the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart
from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O
and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the
HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from
NH3 and its rare isotopologue 15NH3. We suggest assignments for some
unidentified features, notably the new interstellar molecules ND and SH-.
Severe blends have been detected in the line wings of the H218O, H217O and 13CO
lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in
Astronomy and Astrophysics 30 August 200
Engineering the Level Structure of a Giant Artificial Atom in Waveguide Quantum Electrodynamics
Engineering light-matter interactions at the quantum level has been central
to the pursuit of quantum optics for decades. Traditionally, this has been done
by coupling emitters, typically natural atoms and ions, to quantized
electromagnetic fields in optical and microwave cavities. In these systems, the
emitter is approximated as an idealized dipole, as its physical size is orders
of magnitude smaller than the wavelength of light. Recently, artificial atoms
made from superconducting circuits have enabled new frontiers in light-matter
coupling, including the study of "giant" atoms which cannot be approximated as
simple dipoles. Here, we explore a new implementation of a giant artificial
atom, formed from a transmon qubit coupled to propagating microwaves at
multiple points along an open transmission line. The nature of this coupling
allows the qubit radiation field to interfere with itself leading to some
striking giant-atom effects. For instance, we observe strong
frequency-dependent couplings of the qubit energy levels to the electromagnetic
modes of the transmission line. Combined with the ability to in situ tune the
qubit energy levels, we show that we can modify the relative coupling rates of
multiple qubit transitions by more than an order of magnitude. By doing so, we
engineer a metastable excited state, allowing us to operate the giant transmon
as an effective lambda system where we clearly demonstrate electromagnetically
induced transparency.Comment: 12 pages, 8 figure
Semiclassical theory of spin-orbit interaction in the extended phase space
We consider the semiclassical theory in a joint phase space of spin and
orbital degrees of freedom. The method is developed from the path integrals
using the spin-coherent-state representation, and yields the trace formula for
the density of states. We discuss special cases, such as weak and strong
spin-orbit coupling, and relate the present theory to the earlier approaches.Comment: 36 pages, 8 figures. Version 2: revised Sec. 4.4 and Appendix B;
minor corrections elsewher
Separating the regular and irregular energy levels and their statistics in Hamiltonian system with mixed classical dynamics
We look at the high-lying eigenstates (from the 10,001st to the 13,000th) in
the Robnik billiard (defined as a quadratic conformal map of the unit disk)
with the shape parameter . All the 3,000 eigenstates have been
numerically calculated and examined in the configuration space and in the phase
space which - in comparison with the classical phase space - enabled a clear
cut classification of energy levels into regular and irregular. This is the
first successful separation of energy levels based on purely dynamical rather
than special geometrical symmetry properties. We calculate the fractional
measure of regular levels as which is in remarkable
agreement with the classical estimate . This finding
confirms the Percival's (1973) classification scheme, the assumption in
Berry-Robnik (1984) theory and the rigorous result by Lazutkin (1981,1991). The
regular levels obey the Poissonian statistics quite well whereas the irregular
sequence exhibits the fractional power law level repulsion and globally
Brody-like statistics with . This is due to the strong
localization of irregular eigenstates in the classically chaotic regions.
Therefore in the entire spectrum we see that the Berry-Robnik regime is not yet
fully established so that the level spacing distribution is correctly captured
by the Berry-Robnik-Brody distribution (Prosen and Robnik 1994).Comment: 20 pages, file in plain LaTeX, 7 figures upon request submitted to J.
Phys. A. Math. Gen. in December 199
Submillimeter Emission from Water in the W3 Region
We have mapped the submillimeter emission from the 1(10)-1(01) transition of
ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3
IRS5 region reveals strong water lines at half the positions in the map. The
relative strength of the Odin lines compared to previous observations by SWAS
suggests that we are seeing water emission from an extended region. Across much
of the map the lines are double-peaked, with an absorption feature at -39 km/s;
however, some positions in the map show a single strong line at -43 km/s. We
interpret the double-peaked lines as arising from optically thick,
self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted
lines originate in emission near W3 IRS4. In this model, the unusual appearance
of the spectral lines across the map results from a coincidental agreement in
velocity between the emission near W3 IRS4 and the blue peak of the more
complex lines near W3 IRS5. The strength of the water lines near W3 IRS4
suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
- …