883 research outputs found

    Representing statistical distributions for uncertain parameters in LCA. Relationships between mathematical forms, their representation in EcoSpold, and their representation in CMLCA

    Get PDF
    Wetensch. publicatieInstitute of Environmental Science

    Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Get PDF
    © 2016 ESO. Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] 1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims. The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ∌ 45 000) and high-signal-tonoise (S=N > 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods. High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results.We confirm that the analysed stars are moderately metal-poor (-1:04≀[Fe/H]≀-0:43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≀+0:2, and α-enhanced.We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na-O, Al-O, Al-Mg anti-correlations) were detected in our sample. The heavy elements Y, Zr, Ba, La, and Eu also exhibit oversolar abundances. Three out of the five stars analysed here show slightly enhanced [Y/Ba] ratios similar to those found in other metal-poor bulge globular clusters (NGC 6522 and M 62). Conclusions. This sample shows enhancement in the first-to-second peak abundance ratios of heavy elements, as well as dominantly s-process element excesses. This can be explained by different nucleosynthesis scenarios: (a) the main r-process plus extra mechanisms, such as the weak r-process; (b) mass transfer from asymptotic giant branch stars in binary systems; (c) an early generation of fast-rotating massive stars. Larger samples of moderately metal-poor bulge stars, with detailed chemical abundances, are needed to better constrain the source of dominantly s-process elements in the early Universe

    Boron depletion in 9 to 15 M(circle dot) stars with rotation

    Get PDF
    The treatment of mixing is still one of the major uncertainties in stellar evolution models. One open question is how well the prescriptions for rotational mixing describe the real effects. We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such as boron and nitrogen. We followed 9, 12 and 15 M(O) models with rotation from the zero age main sequence up to the end of He burning. The calculations show the expected behaviour with faster depletion of boton for faster rotating stars and more massive stars. The mixing at the surface is more efficient, than predicted by prescriptions used in other codes and reproduces the majority of observations very well However two observed stars with strong boron depletion but, no nitrogen enhancement still can not be explained and let the question open whether additional mixing processes are acting in these massive star

    IEA EBC Annex 72 - Assessing life cycle related environmental impacts caused by buildings - Targets and tasks

    Get PDF
    Investment decisions for buildings made today largely determine their environmental impacts over many future decades due to their long lifetimes. Such decisions involve a trade-off between additional investments today and potential savings during use and at end of life - in terms of economic costs, primary energy consumption, greenhouse gas emissions and other environmental impacts. Life cycle assessment (LCA) is suited to identify measures and action to increase the resource efficiency and the environmental performance of buildings and construction. This paper gives an overview of an ongoing international research project within the IEA EBC with the overall aim to harmonise LCA approaches on buildings and foster life cycle thinking in the real estate and construction sectors. The objectives of the project are i) to establish a common methodology guideline to assess the life cycle based environmental impacts caused by buildings, ii) to establish methods for the development of specific environmental benchmarks for different types of buildings, iii) to derive regionally differentiated guidelines and tools for the use of LCA in building design and tools such as BIM, and iv) to improve data availability by developing national or regional databases with regionally differentiated LCA data tailored to the construction sector. To ensure practical solutions a number of case studies will be used to test and illustrate the consensus approaches and research issues

    Einstein's lessons for energy accounting in LCA

    Get PDF
    Wetensch. publicatieInstitute of Environmental Science

    Informal Action—Adjudication—Rule Making: Some Recent Developments in Federal Administrative Law

    Get PDF
    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.QC 20140825</p

    To weigh or not to weigh. Recommendations for communicating aggregated results of buildings LCA

    Get PDF
    Interpreting contradictory results of multiple midpoint environmental indicators is challenging task. Hence, partial or full aggregation into building single scores has gained ground for the clear message they convey. This paper helps to improve understanding of the possibilities and limitations of such practice. Partial aggregated scores of five buildings were explored, limited to the environmental indicators shared by the methods examined and inventoried for the case studies. In general, the buildings’ single score ranking was maintained regardless of the aggregation approach, but rank reversal is possible if e.g., ecotoxicity impact indicators are considered. Such indicators are directly influenced by the mass of metals used in a building. Furthermore, uncertainties on their results, in LCI data and in impact and damage assessment are high, and experience with them is still limited. No single best aggregation stands out per se. All of them can play their part if officially supported to ensure that coherent weights/factors are built upon solid, up-to-date data and fair intergenerational and income equity valuation procedures. In such cases, LCA practitioners are encouraged to use single scores in addition to environmental profiles or selected indicators. Overall aggregation procedures shall be transparently described, and zero pure time preference rate and equity weighting applied and explicitly declared. Sensitivity/uncertainty analysis shall be performed to assess results robustness, potential ranking reversal risks, and the effect of different discount rates. When partial aggregation is alternatively pursued, it shall be based on endpoint categories

    A 6D CAD Model for the Automatic Assessment of Building Sustainability

    Get PDF
    Current building assessment methods limit themselves in their environmental impact by failing to consider the other two aspects of sustainability: the economic and the social. They tend to be complex and costly to run, and therefore are of limited value in comparing design options. This paper proposes and develops a model for the automatic assessment of a building’s sustainability life cycle with the building information modelling (BIM) approach and its enabling technologies. A 6D CAD model is developed which could be used as a design aid instead of as a post-construction evaluation tool. 6D CAD includes 3D design as well as a fourth dimension (schedule), a fifth dimension (cost) and a sixth dimension (sustainability). The model can automatically derive quantities (5D), calculate economic (5D and 6D), environmental and social impacts (6D), and evaluate the sustainability performance of alternative design options. The sustainability assessment covers the life cycle stages of a building, namely material production, construction, operation, maintenance, demolition and disposal
    • 

    corecore