13 research outputs found

    Biogeochemical variations at the Porcupine Abyssal Plain sustained Observatory in the northeast Atlantic Ocean, from weekly to inter-annual timescales

    Get PDF
    We present high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the Porcupine Abyssal Plain sustained Observatory (PAP-SO) in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010–2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a fluorescence and nitrate concentration data) to analyse weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under-saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier data set collected at the site (2003–2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom.The 2010–2012 period shows an overall increase in p(CO2) values when compared to the 2003–2005 period as would be expected from increases due to anthropogenic CO2 emissions. The surface temperature, wind speed and MLD measurements are similar for both periods of time. Future work should incorporate daily CO2 flux measurements made using CO2 sensors at 1 m depth and the in situ wind speed data now available from the UK Met Office Buoy

    Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory

    Get PDF
    In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m?2 day?1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP) and new production. Seasonal NCP and new production were found to be 4.57 ± 0.85 mol C m?2 and 0.37 ± 0.14 mol N m?2, respectively. The C : N ratio was high (12) compared to the Redfield ratio (6.6), and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4 %, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses

    Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study

    Get PDF
    BACKGROUND: Real-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF) velocity in normal human myocardium. METHODS: Twenty study subjects with normal left ventricular (LV) wall motion and normal coronary arteries, underwent low-power real-time MCE based on color-coded pulse inversion Doppler. Standard apical LV views were acquired during constant IV. infusion of SonoVue(Âź). Following transient microbubble destruction, the contrast replenishment rate (ÎČ), reflecting MBF velocity, was derived by plotting signal intensity vs. time and fitting data to the exponential function; y (t) =A (1-e(-ÎČ(t-t0))) + C. RESULTS: Quantification was feasible in 82%, 49% and 63% of four-chamber, two-chamber and apical long-axis view segments, respectively. The LAD (left anterior descending artery) and RCA (right coronary artery) territories could potentially be evaluated in most, but contrast detection in the LCx (left circumflex artery) bed was poor. Depending on localisation and which frames to be analysed, mean values of [Image: see text] were 0.21–0.69 s(-1), with higher values in medial than lateral, and in basal compared to apical regions of scan plane (p = 0.03 and p < 0.01). Higher ÎČ-values were obtained from end-diastole than end-systole (p < 0.001), values from all-frames analysis lying between. CONCLUSION: Low-power real-time MCE did have the potential to give contrast enhancement for quantification of resting regional MBF velocity. However, the technique is difficult and subjected to several limitations. Significant variability in ÎČ suggests that this parameter is best suited for with-in patient changes, comparing values of stress studies to baseline

    The interplay between terrestrial organic matter and benthic macrofauna: Framework, synthesis, and perspectives

    Get PDF
    Abstract Ecosystems are shaped by physical, chemical, and biological drivers, which affect the quality and quantity of basal energy sources, with impacts that cascade to higher trophic levels. In coastal, shelf, and marine habitats, terrestrial‐derived organic matter (ter‐OM) can be a key driver of ecosystem structure and function. Climate change is expected to alter land–ocean connectivity in many regions, with a broad range of potential consequences for impacted ecosystems, particularly in the coastal zone. The benthic compartment is an important link between the large organic carbon pools stored on land and the marine environment. At the same time, the macrofauna plays a key role in the processing, biological uptake, and fate of ter‐OM in the aquatic environment, with implications for coastal ecosystem functioning, benthic–pelagic coupling, carbon burial, and biogeochemical cycles. However, information about relationships between land–ocean connectivity (including ter‐OM loads) and coastal benthic community responses remains spread across disciplines, and a broad perspective on the potential impacts of a changing climate is still missing. Here, we explore the interplay between benthic macrofaunal communities and ter‐OM through a paired narrative and research weaving analysis, which combines systematic mapping and bibliometric analysis. The review describes the past development and status of the research field as well as the lack of information in some geographical regions and habitats worldwide. We highlight the role of macrofauna in carbon cycling and the growing evidence that ter‐OM plays a key role in the structure and function of benthic communities, not strictly limited to estuarine habitats. Climate change poses challenges for the prediction of future ter‐OM fluxes and potential macrofauna responses to this additional stressor, thus requiring new methodological approaches (e.g., multimarker approaches for OM characterization) and long‐term monitoring programs across different habitats and spatiotemporal scales

    Polar ocean acidification: A bipolar view on changes to the marine carbon dioxide system

    No full text
    The oceanic inorganic carbon content is increasing due to partial equilibration with the anthropogenic increase in atmospheric carbon dioxide. Due to the slow turnover of the ocean, the greatest changes to marine carbonate chemistry are presently seen in the productive surface ocean. The high latitudes are regions with the greatest connectivity between the surface and intermediate to deep oceans and are thus sites where anthropogenic carbon is removed most effectively from the surface. They are also areas which are predicted to undergo the earliest and greatest changes to the carbonate system with the potential to modify ecological systems with associated climate feedbacks. Under the IPY BIAC project we have studied the processes conditioning the carbon biogeochemistry of the surface and intermediate waters of the Weddell and Barents Seas prior to deep water formation. We will show the rates and regionality of anthropogenic carbon increases and ocean acidification determined from direct observations and data based methods. We will also discuss future changes in high latitude acidification derived from both simple ocean and complex coupled physical-biological ecosystem models providing tipping points predictions. These will be related to recent results from deliberate carbon dioxide manipulation experiments on marine pelagic ecosystems

    Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry

    Get PDF
    This study evaluates long-term mean fluxes of carbon and nutrients to the upper 100m of the Iceland Sea. The study utilises hydro-chemical data from the Iceland Sea time series station (68.00 degrees N, 12.67 degrees W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100-200 m), we calculate monthly deficits in the surface, and use these to deduce the long-term mean surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air-sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.9 +/- 0.5 and 0.45 +/- 0.09 mol m(-2) yr(-1), respectively, and the annual air-sea uptake of atmospheric CO2 is 4.4 +/- 1.1 mol C m(-2) yr(-1). The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated as 7.3 +/- 1.0 mol C m(-2) yr(-1). The typical, median C : N ratio during the period of net community uptake is 9.0, and clearly higher than the Redfield ratio, but is varying during the season
    corecore