120 research outputs found
Accuracy of popular automatic QT Interval algorithms assessed by a 'Gold Standard' and comparison with a Novel method: computer simulation study
BACKGROUND: Accurate measurement of the QT interval is very important from a clinical and pharmaceutical drug safety screening perspective. Expert manual measurement is both imprecise and imperfectly reproducible, yet it is used as the reference standard to assess the accuracy of current automatic computer algorithms, which thus produce reproducible but incorrect measurements of the QT interval. There is a scientific imperative to evaluate the most commonly used algorithms with an accurate and objective 'gold standard' and investigate novel automatic algorithms if the commonly used algorithms are found to be deficient. METHODS: This study uses a validated computer simulation of 8 different noise contaminated ECG waveforms (with known QT intervals of 461 and 495 ms), generated from a cell array using Luo-Rudy membrane kinetics and the Crank-Nicholson method, as a reference standard to assess the accuracy of commonly used QT measurement algorithms. Each ECG contaminated with 39 mixtures of noise at 3 levels of intensity was first filtered then subjected to three threshold methods (T1, T2, T3), two T wave slope methods (S1, S2) and a Novel method. The reproducibility and accuracy of each algorithm was compared for each ECG. RESULTS: The coefficient of variation for methods T1, T2, T3, S1, S2 and Novel were 0.36, 0.23, 1.9, 0.93, 0.92 and 0.62 respectively. For ECGs of real QT interval 461 ms the methods T1, T2, T3, S1, S2 and Novel calculated the mean QT intervals(standard deviations) to be 379.4(1.29), 368.5(0.8), 401.3(8.4), 358.9(4.8), 381.5(4.6) and 464(4.9) ms respectively. For ECGs of real QT interval 495 ms the methods T1, T2, T3, S1, S2 and Novel calculated the mean QT intervals(standard deviations) to be 396.9(1.7), 387.2(0.97), 424.9(8.7), 386.7(2.2), 396.8(2.8) and 493(0.97) ms respectively. These results showed significant differences between means at >95% confidence level. Shifting ECG baselines caused large errors of QT interval with T1 and T2 but no error with Novel. CONCLUSION: The algorithms T2, T1 and Novel gave low coefficients of variation for QT measurement. The Novel technique gave the most accurate measurement of QT interval, T3 (a differential threshold method) was the next most accurate by a large margin. The objective and accurate 'gold standard' presented in this paper may be useful to assess new QT measurement algorithms. The Novel algorithm may prove to be more accurate and reliable method to measure the QT interval
The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1
The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems
Evaluation of SMAP Core Validation Site Representativeness Errors Using Dense Networks of In Situ Sensors and Random Forests
In order to validate its soil moisture products, the NASA Soil Moisture Active Passive (SMAP) mission utilises sites with permanent networks of in situ soil moisture sensors maintained by independent calibration and validation partners in a variety of ecosystems around the world. Measurements from each core validation site (CVS) are combined in a weighted average to produce an estimate of soil moisture at a 33-km scale that represents the SMAP’s radiometer-based retrievals. Since upscaled estimates produced in this manner are dependent on the weighting scheme applied, an independent method of quantifying their biases is needed.Here,we present one such method that uses soil moisture measurements taken from a dense, but temporary, network of soil moisture sensors deployed at each CVS to train a random forests regression expressing soil moisture in terms of a set of spatial variables. The regression then serves as an independent source of upscaled estimates against which permanent network upscaled estimates can be compared in order to calculate bias statistics.This method,which offers a systematic and unified approach to estimate bias across a variety of validation sites, was applied to estimate biases at four CVSs. The results showed that the magnitude of the uncertainty in the permanent network upscaling bias can sometimes exceed 80% of the upper limit on SMAP’s entire allowable unbiased root-mean-square error(ubRMSE).Such large CVS bias uncertainties could make it more difficult to assess biases in soil moisture estimates from SMAP
Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning
Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the
limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is
involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown
adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of
differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet
formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1.
Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy,
formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In
agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage,
adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its
brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by
PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a
new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that
both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.We thank FPLD2 patients for donating biological samples. We thank the Italian
Network for Laminopathies and the European Consortium of Lipodystrophies
(ECLip) for support and helpful discussion. We thank Aurelio Valmori for the
technical support. The studies were supported by Rizzoli Orthopedic Institute
“5 per mille” 2014 project to MC, AIProSaB project 2016 and Fondazione Del
Monte di Bologna e Ravenna grant 2015–2016 “New pharmacological
approaches in bone laminopathies based on the use of antibodies neutralizing
TGF beta 2” to GL. GL is also supported by PRIN MIUR project 2015FBNB5Y.S
Plasma and dietary carotenoid, retinol and tocopherol levels and the risk of gastric adenocarcinomas in the European prospective investigation into cancer and nutrition
Despite declining incidence rates, gastric cancer (GC) is a major cause of death worldwide. Its aetiology may involve dietary antioxidant micronutrients such as carotenoids and tocopherols. The objective of this study was to determine the association of plasma levels of seven common carotenoids, their total plasma concentration, retinol and α- and γ-tocopherol, with the risk of gastric adenocarcinoma in a case–control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), a large cohort involving 10 countries. A secondary objective was to determine the association of total sum of carotenoids, retinol and α-tocopherol on GCs by anatomical subsite (cardia/noncardia) and histological subtype (diffuse/intestinal). Analytes were measured by high-performance liquid chromatography in prediagnostic plasma from 244 GC cases and 645 controls matched by age, gender, study centre and date of blood donation. Conditional logistic regression models adjusted by body mass index, total energy intake, smoking and Helicobacter pylori infection status were used to estimate relative cancer risks. After an average 3.2 years of follow-up, a negative association with GC risk was observed in the highest vs the lowest quartiles of plasma β-cryptoxanthin (odds ratio (OR)=0.53, 95% confidence intervals (CI)=0.30–0.94, Ptrend=0.006), zeaxanthin (OR=0.39, 95% CI=0.22–0.69, Ptrend=0.005), retinol (OR=0.55, 95% CI=0.33–0.93, Ptrend=0.005) and lipid-unadjusted α-tocopherol (OR=0.59, 95% CI=0.37–0.94, Ptrend=0.022). For all analytes, no heterogeneity of risk estimates or significant associations were observed by anatomical subsite. In the diffuse histological subtype, an inverse association was observed with the highest vs lowest quartile of lipid-unadjusted α-tocopherol (OR=0.26, 95% CI=0.11–0.65, Ptrend=0.003). These results show that higher plasma concentrations of some carotenoids, retinol and α-tocopherol are associated with reduced risk of GC
Indomethacin-induced activation of the death receptor-mediated apoptosis pathway circumvents acquired doxorubicin resistance in SCLC cells
Small-cell lung cancers (SCLCs) initially respond to chemotherapy but are often resistant at recurrence. A potentially new method to overcome resistance is to combine classical chemotherapeutic drugs with apoptosis induction via tumour necrosis factor (TNF) death receptor family members such as Fas. The doxorubicin-resistant human SCLC cell line GLC(4)-Adr and its parental doxorubicin-sensitive line GLC(4) were used to analyse the potential of the Fas-mediated apoptotic pathway and the mitochondrial apoptotic pathway to modulate doxorubicin resistance in SCLC. Western blotting showed that all proteins necessary for death-inducing signalling complex formation and several inhibitors of apoptosis were expressed in both lines. The proapototic proteins Bid and caspase-8, however, were higher expressed in GLC(4)-Adr. In addition, GLC(4)-Adr expressed more Fas (3.1x) at the cell membrane. Both lines were resistant to anti-Fas antibody, but plus the protein synthesis inhibitor cycloheximide anti-Fas antibody induced 40% apoptosis in GLC(4)-Adr. Indomethacin, which targets the mitochondrial apoptotic pathway, induced apoptosis in GLC(4)-Adr but not in GLC(4) cells. Surprisingly, in GLC(4)-Adr indomethacin induced caspase-8 and caspase-9 activation as well as Bid cleavage, while both caspase-8 and caspase-9 specific inhibitors blocked indomethacin-induced apoptosis. In GLC(4)-Adr, doxorubicin plus indomethacin resulted in elevated caspase activity and a 2.7-fold enhanced sensitivity to doxorubicin. In contrast, no effect of indomethacin on doxorubicin sensitivity was observed in GLC(4). Our findings show that indomethacin increases the cytotoxic activity of doxorubicin in a doxorubicin-resistant SCLC cell line partly via the death receptor apoptosis pathway, independent of Fas
Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts
Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007).
Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold.
The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates.
Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants.
The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
- …