155 research outputs found

    Can Nrf2 modulate the development of intestinal fibrosis and cancer in inflammatory bowel disease?

    Get PDF
    One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD

    Inflammatory bowel disease: New insights into the interplay between environmental factors and pparγ

    Get PDF
    The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn’s disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology re-mains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cy-tokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeo-stasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Further-more, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients’ colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships

    The expression of inhibitor of bruton's tyrosine kinase gene is progressively up regulated in the clinical course of chronic lymphocytic leukaemia conferring resistance to apoptosis.

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is the most common B-cell malignancy with a variable clinical outcome. Biomarkers of CLL progression are required for optimising prognosis and therapy. The Inhibitor of Bruton's tyrosine kinase-isoform α (IBTKα) gene encodes a substrate receptor of Cullin 3-dependent E3 ubiquitin ligase, and promotes cell survival in response to the reticulum stress. Searching for novel markers of CLL progression, we analysed the expression of IBTKα in the peripheral blood B-cells of CLL patients, before and after first line therapy causing remission. The expression of IBTKα was significantly increased in disease progression, and decreased in remission after chemotherapy. Consistently with a pro-survival action, RNA interference of IBTKα increased the spontaneous and Fludarabine-induced apoptosis of MEC-1 CLL cells, and impaired the cell cycle of DeFew B-lymphoma cells by promoting the arrest in G0/G1 phase and apoptosis. Consistently, RNA interference of IBTKα up regulated the expression of pro-apoptotic genes, including TNF, CRADD, CASP7, BNIP3 and BIRC3. Our results indicate that IBTKα is a novel marker of CLL progression promoting cell growth and resistance to apoptosis. In this view, IBTKα may represent an attractive cancer drug target for counteracting the therapy-resistance of tumour cells

    Safety of treatments for inflammatory bowel disease: Clinical practice guidelines of the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD)

    Get PDF
    Inflammatory bowel diseases are chronic conditions of unknown etiology, showing a growing incidence and prevalence in several countries, including Italy. Although the etiology of Crohn's disease and ulcerative colitis is unknown, due to the current knowledge regarding their pathogenesis, effective treatment strategies have been developed. Several guidelines are available regarding the efficacy and safety of available drug treatments for inflammatory bowel diseases. Nevertheless, national guidelines provide additional information adapted to local feasibility, costs and legal issues related to the use of the same drugs. These observations prompted the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD) to establish Italian guidelines on the safety of currently available treatments for Crohn's disease and ulcerative colitis. These guidelines discuss the use of aminosalicylates, systemic and low bioavailability corticosteroids, antibiotics (metronidazole, ciprofloxacin, rifaximin), thiopurines, methotrexate, cyclosporine A, TNFα antagonists, vedolizumab, and combination therapies. These guidelines are based on current knowledge derived from evidence-based medicine coupled with clinical experience of a national working group

    Prostaglandin D2-supplemented “functional eicosanoid testing and typing” assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study

    Get PDF
    Background: Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. Methods: Using the “functional eicosanoid testing and typing” (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. Results: We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14–2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. Conclusions: The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD

    Allergic rhinitis and asthma: inflammation in a one-airway condition

    Get PDF
    BACKGROUND: Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. DISCUSSION: In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. CONCLUSION: Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites

    Las azoteas tradicionales desde la perspectiva del saber local ancestral : investigación local, compilada por las mujeres afrodescendientes de la comunidad de Zaragoza, Valle del Cauca

    Get PDF
    El documento hace énfasis en el proceso de construcción de la estructura de las azoteas o huertas elevadas, teniendo en cuenta los métodos ancestrales y los tipos de azoteas utilizadas por una comunidad de Zaragoza, se describen sus beneficios, plantas cultivadas en las azoteas, épocas de siembra y siembra de plantas medicinales.The document emphasizes the process of construction of the structure of the roofs or raised gardens, taking into account the ancestral methods and the types of roofs used by a community of Zaragoza, its benefits are described, plants grown on the roofs, eras of sowing and planting of medicinal plants.El uso social de las azoteas -- Los tipos de azoteas -- Los beneficios de las azoteas -- Cómo se hacía el amarre en la construcción tradicional de las azoteas -- Los sustratos del cultivo -- La importancia de las plantas cultivadas en las azoteas -- Las asociaciones entre plantas -- La época de siembra de las plantas medicinales -- El proceso de construcción de una azotea en imágenes -- Las plantas medicinales cultivadas por la comunidadn

    Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences

    Get PDF
    Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes.Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (p<0.05) in our discovery cohort and in three independent cohorts at either the SNP or gene level (p<0.05). Further, we determined that our selection approach was superior to random selection of genes either differentially expressed in asthmatics compared to controls (p = 0.0049) or selected based on the literature alone (p = 0.0049), substantiating the validity of our gene selection approach. Importantly, we observed that 7 of 9 SNPs in the KIF3A gene more than doubled the odds of asthma (OR = 2.3, p<0.0001) and increased the odds of allergic disease (OR = 1.8, p<0.008). Our data indicate that KIF3A rs7737031 (T-allele) has an asthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach.Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes
    corecore