7,160 research outputs found
Varying rock responses as an indicator of changes in CO2-H2O fluid composition
The formation of the late Archean charnockite zone of southern India was ascribed to dehydration recrystallization due to an influx of CO2. Pressure temperature conditions for the metamorphism were calculated at about 750 C and 7.5 Kbar. The composition of the volatile species presently contained in fluid inclusions in the rocks changes across the transition zone. The transition zone was studied at Kabbaldurga and the paths taken by the fluids were identified
The geology and petrogenesis of the southern closepet granite
The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases
Harnessing Electric Fields for Microfluidics – From Lightning Sparks to Tiny Tornadoes
The dominance of surface tension and viscous effects over body forces such as inertia, gravity or centrifugal force makes fluid actuation and particle manipulation at microscale dimensions extremely difficult. We demonstrate the possibility of exploiting electric fields to drive unstable turbulent-like flows for micromixing and complex flows for efficient particle separation and concentration. In particular, the ions resulting from the breakdown of air surrounding a theoretically singular sharp electrode tip due to corona discharge is employed to accelerate the air towards the surface of a liquid in a cylindrical microchamber. Through interfacial shear, the surface liquid layer is recirculated to produce a Batchelor-type flow within the chamber that spirals suspended colloidal particles to a stagnation point at the bottom no-slip plane. We show the use of this technology for rapid and efficient separation of red blood cells from plasma for the development of miniaturised point-of-care diagnostics. Such liquid flows also become unstable at high applied voltages and frequencies leading to the generation of vortices that span a cascade of length scales, which can be exploited for micromixing
Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution
Suspensions of copper nanowires are emerging as new electronic inks for
next-generation flexible electronics. Using a novel surface acoustic wave
driven extensional flow technique we are able to perform currently lacking
analysis of these suspensions and their complex buffer. We observe extensional
viscosities from 3 mPas (1 mPas shear viscosity) to 37.2
Pas via changes in the suspension concentration, thus capturing low
viscosities that have been historically very challenging to measure. These
changes equate to an increase in the relative extensional viscosity of nearly
12,200 times at a volume fraction of just 0.027. We also find that interactions
between the wires and the necessary polymer additive affect the rheology
strongly. Polymer-induced elasticity shows a reduction as the buffer relaxation
time falls from 819 to 59 s above a critical particle concentration. The
results and technique presented here should aid in the future formulation of
these promising nanowire suspensions and their efficient application as inks
and coatings.Comment: 7 pages, 5 figures, under review for Soft Matter RS
Room temperature magneto-optic effect in silicon light-emitting diodes
In weakly spin-orbit coupled materials, the spin-selective nature of
recombination can give rise to large magnetic-field effects, for example on
electro-luminescence from molecular semiconductors. While silicon has weak
spin-orbit coupling, observing spin-dependent recombination through
magneto-electroluminescence is challenging due to the inefficiency of emission
due to silicon's indirect band-gap, and to the difficulty in separating
spin-dependent phenomena from classical magneto-resistance effects. Here we
overcome these challenges to measure magneto-electroluminescence in silicon
light-emitting diodes fabricated via gas immersion laser doping. These devices
allow us to achieve efficient emission while retaining a well-defined geometry
thus suppressing classical magnetoresistance effects to a few percent. We find
that electroluminescence can be enhanced by up to 300\% near room temperature
in a seven Tesla magnetic field showing that the control of the spin degree of
freedom can have a strong impact on the efficiency of silicon LEDs
Significance of the late Archaean granulite facies terrain boundaries, Southern West Greenland
Three distinct episodes and occurrences of granulite metamorphism in West Greenland are described: (1) the oldest fragmentary granulites occur within the 3.6-Ga Amitsoq gneisses and appear to have formed 200 Ma after the continental crust in which they lie (Spatially associated rapakivi granites have zircon cores as old as 3.8 Ga, but Rb-Sr, whole-rock Pb-Pb, and all other systems give 3.6 Ga, so these granulites apparently represent a later metamorphic event); (2) 3.0-Ga granulites of the Nordlandet Peninsula NW of Godthaab, developed immediately after crustal formation in hot, dry conditions, are carbonate-free, associated with voluminous tonalite, and formed at peak metamorphic conditions of 800 C and 7 to 8 kbar (Synmetamorphic trondhjemite abounds and the activity of H2O has been indicated by Pilar to have varied greatly); and (3) 2.8-Ga granulites south of Godthaab, lie to the south of retrogressed amphibolite terranes. Prograde amphibolite-granulite transitions are clearly preserved only locally at the southern end of this block, near Bjornesund, south of Fiskenaesset. Progressively deeper parts of the crust are exposed from south to north as a major thrust fault is approached. Characteristic big hornblende pegmatites, which outcrop close to the thrust in the east, have been formed by replacement of orthopyroxene. Comparable features were not seen in South Indian granulites. It was concluded that no one mechanism accounts for the origin of all granulites in West Greenland. Various processes have interacted in different ways, and what happened in individual areas must be worked out by considering all possible processes
Spectroscopy of Seven Cataclysmic Variables with Periods Above Five Hours
We present spectroscopy of seven cataclysmic variable stars with orbital
periods P(orb) greater than 5 hours, all but one of which are known to be dwarf
novae. Using radial velocity measurements we improve on previous orbital period
determinations, or derive periods for the first time. The stars and their
periods are
TT Crt, 0.2683522(5) d;
EZ Del, 0.2234(5) d;
LL Lyr, 0.249069(4) d;
UY Pup, 0.479269(7) d;
RY Ser, 0.3009(4) d;
CH UMa, 0.3431843(6) d; and
SDSS J081321+452809, 0.2890(4) d.
For each of the systems we detect the spectrum of the secondary star,
estimate its spectral type, and derive a distance based on the surface
brightness and Roche lobe constraints. In five systems we also measure the
radial velocity curve of the secondary star, estimate orbital inclinations, and
where possible estimate distances based on the MV(max) vs.P(orb) relation found
by Warner. In concordance with previous studies, we find that all the secondary
stars have, to varying degrees, cooler spectral types than would be expected if
they were on the main sequence at the measured orbital period.Comment: 25 pages, 2 figures, accepted for Publications of the Astronomical
Society of the Pacifi
The 'Lindholme Advance' and the extent of the Last Glacial Maximum in the Vale of York
The limits of the glacier that occupied the southwest part of the southern Vale of York at the Last Glacial Maximum are defined in relation to recent temporary exposures at Lindholme and previous regional mapping by Geoff Gaunt. Erratic content of associated diamicts indicates sources in the Yorkshire Dales, over Stainmore and along the Permo-Triassic outcrops on the west side of the Vale of York. The advance is dated to an episode associated with a high level of pro-glacial Lake Humber within the Last Glacial Maximum. Lidar imagery suggests that the northeastern ice limit is concealed beneath later alluvium of the rivers Ouse and Trent
The Nature of the Secondary Star in the Black Hole X-Ray Transient V616 Mon (=A0620-00)
We have used NIRSPEC on Keck II to obtain -band spectroscopy of the low
mass X-ray binary V616 Mon (= A062000). V616 Mon is the proto-typical soft
x-ray transient containing a black hole primary. As such it is important to
constrain the masses of the binary components. The modeling of the infrared
observations of ellipsoidal variations in this system lead to a derived mass of
11.0 M_{\sun} for the black hole. The validity of this derivation has been
called into question due to the possiblity that the secondary star's spectral
energy distribution is contaminated by accretion disk emission (acting to
dilute the variations). Our new -band spectrum of V616 Mon reveals a
late-type K dwarf secondary star, but one that has very weak CO
absorption features. Comparison of V616 Mon with SS Cyg leads us to estimate
that the accretion disk supplies only a small amount of -band flux, and the
ellipsoidal variations are not seriously contaminated. If true, the derived
orbital inclination of V616 Mon is not greatly altered, and the mass of the
black hole remains large. A preliminary stellar atmosphere model for the
-band spectrum of V616 Mon reveals that the carbon abundance is
approximately 50% of the solar value. We conclude that the secondary star in
V616 Mon has either suffered serious contamination from the accretion of
supernova ejecta that created the black hole primary, or it is the stripped
remains of a formerly more massive secondary star, one in which the CNO cycle
had been active.Comment: 20 pages, 5 figure
- …
