Suspensions of copper nanowires are emerging as new electronic inks for
next-generation flexible electronics. Using a novel surface acoustic wave
driven extensional flow technique we are able to perform currently lacking
analysis of these suspensions and their complex buffer. We observe extensional
viscosities from 3 mPa⋅s (1 mPa⋅s shear viscosity) to 37.2
Pa⋅s via changes in the suspension concentration, thus capturing low
viscosities that have been historically very challenging to measure. These
changes equate to an increase in the relative extensional viscosity of nearly
12,200 times at a volume fraction of just 0.027. We also find that interactions
between the wires and the necessary polymer additive affect the rheology
strongly. Polymer-induced elasticity shows a reduction as the buffer relaxation
time falls from 819 to 59 μs above a critical particle concentration. The
results and technique presented here should aid in the future formulation of
these promising nanowire suspensions and their efficient application as inks
and coatings.Comment: 7 pages, 5 figures, under review for Soft Matter RS