424 research outputs found

    Crohn's disease activity index and Vienna classification - Is it worthwhile to calculate before surgery?

    Get PDF
    Background: Crohn's disease (CD) patients with increased disease activity may reveal an increased risk for perioperative complications. The `Crohn's disease activity index' (CDAI) and the `Vienna classification' (VC) were developed for standardized disease activity estimations. The significance of these scores to predict extent, type and early outcome of surgery in CD patients was analyzed. Methods: In 179 surgically treated CD patients, the CDAI and VC were assessed from a prospective database. Relations of the scores with CD risk factors, type, number, location and complications of surgery were analyzed. Results: VC behavior and location subtypes were associated with distinct types of surgery (i.e. `strictureplasty' in `stricturing disease', `colon surgery' in `colon involvement'), but not with surgery type and extent or outcome. Surgery extent (i.e. with 5 vs. 3 `surgical sites' 425 +/- 25 vs. 223.3 +/- 25) and complications (357.1 +/- 36.9 (with) vs. 244.4 +/- 13 (without)) were associated with elevated CDAI levels; however, nicotine abuse remained the only significant risk factor for perioperative complications after multiple logistic regression. Conclusion: The significance of VC or CDAI for predicting the extent of surgery or complications is limited. None of the tested variables except preoperative nicotine abuse influenced the likelihood for perioperative complications. Copyright (c) 2006 S. Karger AG, Base

    Output spectrum of a detector measuring quantum oscillations

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector and calculate the spectral density of the detector output. In the weakly coupled case the spectrum exhibits a moderate peak at the frequency of quantum oscillations and a Lorentzian-shape increase of the detector noise at low frequency. With increasing coupling the spectrum transforms into a single Lorentzian corresponding to random jumps between two states. We prove that the Bayesian formalism for the selective evolution of the density matrix gives the same spectrum as the conventional master equation approach, despite the significant difference in interpretation. The effects of the detector nonideality and the finite-temperature environment are also discussed.Comment: 8 pages, 6 figure

    Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model

    Get PDF
    We devise a computational approach to the Hubbard model that captures the strong coupling dynamics arising when the Fermi level is at a Van Hove singularity in the density of states. We rely on an approximate degeneracy among the many-body states accounting for the main instabilities of the system (antiferromagnetism, d-wave superconductivity). The Fermi line turns out to be deformed in a manner consistent with the pinning of the Fermi level to the Van Hove singularity. For a doping rate δ∟0.2\delta \sim 0.2, the ground state is characterized by d-wave symmetry, quasiparticles gapped only at the saddle-points of the band, and a large peak at zero momentum in the d-wave pairing correlations.Comment: 4 pages, 2 Postscript figure

    Superselection Sectors and General Covariance.I

    Full text link
    This paper is devoted to the analysis of charged superselection sectors in the framework of the locally covariant quantum field theories. We shall analize sharply localizable charges, and use net-cohomology of J.E. Roberts as a main tool. We show that to any 4-dimensional globally hyperbolic spacetime it is attached a unique, up to equivalence, symmetric tensor \Crm^*-category with conjugates (in case of finite statistics); to any embedding between different spacetimes, the corresponding categories can be embedded, contravariantly, in such a way that all the charged quantum numbers of sectors are preserved. This entails that to any spacetime is associated a unique gauge group, up to isomorphisms, and that to any embedding between two spacetimes there corresponds a group morphism between the related gauge groups. This form of covariance between sectors also brings to light the issue whether local and global sectors are the same. We conjecture this holds that at least on simply connected spacetimes. It is argued that the possible failure might be related to the presence of topological charges. Our analysis seems to describe theories which have a well defined short-distance asymptotic behaviour.Comment: 66 page

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    A synthetic biology approach to probing nucleosome symmetry

    Get PDF
    The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and several recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read out, we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing the effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We also demonstrate the utility of this system for analysis of histone modification crosstalk, using mass spectrometry to separately identify modifications on each H3 molecule within asymmetric nucleosomes. The ability to generate asymmetric nucleosomes in vivo and in vitro provides a powerful and generalizable tool to probe the mechanisms by which H3 tails are read out by effector proteins in the cell
    • …
    corecore