3,300 research outputs found

    Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    Get PDF
    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research

    Fire suppression in human-crew spacecraft

    Get PDF
    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities

    Fire safety applications for spacecraft

    Get PDF
    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space

    On the Perturbations of Viscous Rotating Newtonian Fluids

    Get PDF
    The perturbations of weakly-viscous, barotropic, non-self-gravitating, Newtonian rotating fluids are analyzed via a single partial differential equation. The results are then used to find an expression for the viscosity-induced normal-mode complex eigenfrequency shift, with respect to the case of adiabatic perturbations. However, the effects of viscosity are assumed to have been incorporated in the unperturbed (equilibrium) model. This paper is an extension of the normal-mode formalism developed by Ipser & Lindblom for adiabatic pulsations of purely-rotating perfect fluids. The formulas derived are readily applicable to the perturbations of thin and thick accretion disks. We provide explicit expressions for thin disks, employing results from previous relativistic analyses of adiabatic normal modes of oscillation. In this case, we find that viscosity causes the fundamental p- and g- modes to grow while the fundamental c-mode could have either sign of the damping rate.Comment: Accepted for publication by The Astrophysical Journal. 11 pages, no figure

    Topological Censorship

    Full text link
    All three-manifolds are known to occur as Cauchy surfaces of asymptotically flat vacuum spacetimes and of spacetimes with positive-energy sources. We prove here the conjecture that general relativity does not allow an observer to probe the topology of spacetime: any topological structure collapses too quickly to allow light to traverse it. More precisely, in a globally hyperbolic, asymptotically flat spacetime satisfying the null energy condition, every causal curve from \scri^- to {\scri}^+ is homotopic to a topologically trivial curve from \scri^- to {\scri}^+. (If the Poincar\'e conjecture is false, the theorem does not prevent one from probing fake 3-spheres).Comment: 12 pages, REVTEX; 1 postscript figure in a separate uuencoded file. Our earlier version (PRL 71, 1486 (1993)) contained a secondary result, mistakenly attributed to Schoen and Yau, regarding ``passive topological censorship'' of a certain class of topologies. As Gregory Burnett has pointed out (gr-qc/9504012), this secondary result is false. The main topological censorship theorem is unaffected by the erro

    Microgravity Combustion Research: 1999 Program and Results

    Get PDF
    The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial development of space for enhancing the quality of life on Earth is particularly suitable to the field of combustion. This document reviews the current status of microgravity combustion research and derived information. It is the fourth in a series of timely surveys, all published as NASA Technical Memoranda, and it covers largely the period from 1995 to early 1999. The scope of the review covers three program areas: fundamental studies, applications to fire safety and other fields. and general measurements and diagnostics. The document also describes the opportunities for Principal Investigator participation through the NASA Research Announcement program and the NASA Glenn Research Center low-gravity facilities available to researchers

    The Detection of Ionizing Radiation by Plasma Panel Sensors: Cosmic Muons, Ion Beams and Cancer Therapy

    Full text link
    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeuticsComment: Presented at SID Symposium, June 201

    Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens.

    Get PDF
    Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy (EM) imaging, chitosan-alginate NPs were found to induce the disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate NPs also exhibited anti-inflammatory properties as they inhibited P. acnes-induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide (BP), a commonly used antiacne drug, was effectively encapsulated in the chitosan-alginate NPs and demonstrated superior antimicrobial activity against P. acnes compared with BP alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate NP-encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components

    Novel association of APC with intermediate filaments identified using a new versatile APC antibody

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a key player in suppression of colon tumorigenesis, Adenomatous Polyposis Coli (APC) has been widely studied to determine its cellular functions. However, inconsistencies of commercially available APC antibodies have limited the exploration of APC function. APC is implicated in spindle formation by direct interactions with tubulin and microtubule-binding protein EB1. APC also interacts with the actin cytoskeleton to regulate cell polarity. Until now, interaction of APC with the third cytoskeletal element, intermediate filaments, has remained unexamined.</p> <p>Results</p> <p>We generated an APC antibody (APC-M2 pAb) raised against the 15 amino acid repeat region, and verified its reliability in applications including immunoprecipitation, immunoblotting, and immunofluorescence in cultured cells and tissue. Utilizing this APC-M2 pAb, we immunoprecipitated endogenous APC and its binding proteins from colon epithelial cells expressing wild-type APC. Using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS), we identified 42 proteins in complex with APC, including β-catenin and intermediate filament (IF) proteins lamin B1 and keratin 81. Association of lamin B1 with APC in cultured cells and human colonic tissue was verified by co-immunoprecipitation and colocalization. APC also colocalized with keratins and remained associated with IF proteins throughout a sequential extraction procedure.</p> <p>Conclusion</p> <p>We introduce a versatile APC antibody that is useful for cell/tissue immunostaining, immunoblotting and immunoprecipitation. We also present evidence for interactions between APC and IFs, independent of actin filaments and microtubules. Our results suggest that APC associates with all three major components of the cytoskeleton, thus expanding potential roles for APC in the regulation of cytoskeletal integrity.</p

    Plasma Panel Sensors for Particle and Beam Detection

    Full text link
    The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.Comment: 2012 IEEE NS
    corecore