191 research outputs found

    An quantum approach of measurement based on the Zurek's triple model

    Full text link
    In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach for quantum measurement is proposed based on Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516 (1981)]. An exactly-solvable model based on the intracavity system is dealt with in details to demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus from its many degrees of freedom, as the pointer of the apparatus, the collective variable de-couples with the internal environment formed by the effective internal variables, but still interacts with the measured system to form a triple entanglement among the measured system, the pointer and the internal environment. As another mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be summed up to an ideal entanglement or an Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure

    Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N

    Full text link
    The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an automatic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a mixed gamma-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, on the basis of a criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure

    The spectrum of BPS branes on a noncompact Calabi-Yau

    Get PDF
    We begin the study of the spectrum of BPS branes and its variation on lines of marginal stability on O_P^2(-3), a Calabi-Yau ALE space asymptotic to C^3/Z_3. We show how to get the complete spectrum near the large volume limit and near the orbifold point, and find a striking similarity between the descriptions of holomorphic bundles and BPS branes in these two limits. We use these results to develop a general picture of the spectrum. We also suggest a generalization of some of the ideas to the quintic Calabi-Yau.Comment: harvmac, 45 pp. (v2: added references

    Non-linear regression models for Approximate Bayesian Computation

    Full text link
    Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and Computin

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde

    Gravitational waves from rapidly rotating neutron stars

    Full text link
    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of B1012B\approx 10^{12} G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert

    Vacuum Stability in Heterotic M-Theory

    Full text link
    The problem of the stabilization of moduli is discussed within the context of compactified strongly coupled heterotic string theory. It is shown that all geometric, vector bundle and five-brane moduli are completely fixed, within a phenomenologically acceptable range, by non-perturbative physics. This result requires, in addition to the full space of moduli, non-vanishing Neveu-Schwarz flux, gaugino condensation with threshold corrections and the explicit form of the Pfaffians in string instanton superpotentials. The stable vacuum presented here has a negative cosmological constant. The possibility of ``lifting'' this to a metastable vacuum with positive cosmological constant is briefly discussed.Comment: 39 pages, minor correction

    Schools out : Adam Smith and pre-disciplinary international political economy

    Get PDF
    In this article, I argue that invocations of Adam Smith in international political economy (IPE) often reveal the influence therein of a disciplinary ontological disaggregation of economic and non-economic rationality, which I claim is obscured by the tendency to map its complex intellectual contours in terms of competing schools. I trace the origins of the disciplinary characterisation of Smith as the founder of IPE's liberal tradition to invocations of his thought by centrally important figures in the perceived Austrian, Chicago and German historical schools of economics, and reflect upon the significance to IPE of the reiteration of this portrayal by apparent members of its so-called American and British schools. I additionally contrast these interpretations to those put forward by scholars who seek to interpret IPE and Smith's contribution to it in pre-disciplinary terms, which I claim reflects a distinct ontology to that attributed to the British school of IPE with which their work is often associated. I therefore contend that reflection upon invocations of Smith's thought in IPE problematises the longstanding tendency to map its intellectual terrain in terms of competing schools, reveals that the disciplinary ontological consensus that informs this tendency impacts upon articulations of its core concerns and suggests that a pre-disciplinary approach offers an alternative lens through which such concerns might be more effectively framed

    Model-independent measurement of t\boldsymbol{t}-channel single top quark production in ppˉ\boldsymbol{p\bar{p}} collisions at s=1.96\boldsymbol{\sqrt{s}=1.96} TeV

    Full text link
    We present a model-independent measurement of tt-channel electroweak production of single top quarks in \ppbar collisions at s=1.96  TeV\sqrt{s}=1.96\;\rm TeV. Using 5.4  fb15.4\;\rm fb^{-1} of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider, and selecting events containing an isolated electron or muon, missing transverse energy and one or two jets originating from the fragmentation of bb quarks, we measure a cross section \sigma({\ppbar}{\rargap}tqb+X) = 2.90 \pm 0.59\;\rm (stat+syst)\; pb for a top quark mass of 172.5  GeV172.5\;\rm GeV. The probability of the background to fluctuate and produce a signal as large as the one observed is 1.6×1081.6\times10^{-8}, corresponding to a significance of 5.5 standard deviations.Comment: 8 pages, 4 figures, submitted to Phys. Lett.
    corecore