103 research outputs found
Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures
Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2–20 m), deep chlorophyll maximum (DCM; 28–90 m), and deep (100–4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU) using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients). Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial assemblages. Surface bacterial communities displayed a general congruency with the ecological provinces as defined by Longhurst with modest exceptions usually associated with unique hydrographic and biogeochemical features. Collectively, our findings suggest that vertical (habitat) and latitudinal (distance) biogeographic signatures are present and that both environmental parameters and ecological provinces drive the composition of bacterial assemblages in the eastern Atlantic Ocean
A big-data approach to understanding metabolic rate and response to obesity in laboratory mice [preprint]
Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. In humans and in laboratory mice these factors are experimentally measured by powerful and sensitive indirect calorimetry devices. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability in results. Here we examine indirect calorimetry results from two experimental mouse projects, the Mouse Metabolic Phenotyping Centers and International Mouse Phenotyping Consortium to develop insights into large-scale trends in mammalian metabolism. Analysis of nearly 10,000 wildtype mice revealed that the largest experimental variances are consequences of institutional site. This institutional effect on variation eclipsed those of housing temperature, body mass, locomotor activity, sex, or season. We do not find support for the claim that female mice have greater metabolic variation than male mice. An analysis of these factors shows a normal distribution for energy expenditure in the phenotypic analysis of 2,246 knockout strains and establishes a reference for the magnitude of metabolic changes. Using this framework, we examine knockout strains with known metabolic phenotypes. We compare these effects with common environmental challenges including age, and exercise. We further examine the distribution of metabolic phenotypes exhibited by knockout strains of genes corresponding to GWAS obesity susceptibility loci. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents, as well as how to analyze and report data from these studies. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation
Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice
Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b[superscript −/−]) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b[superscript −/−] mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b[superscript −/−] mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation–reduction in altered PUFA and triglyceride metabolism.Pfizer Inc. (grant)National Institutes of Health (U.S.) (grant 5R24DK090963)National Institutes of Health (U.S.) (grant U54-CA112967)National Institutes of Health (U.S.) (grant CA49152 R37)National Institutes of Health (U.S.) (grant R01-DK080756)National Mouse Metabolic Phenotyping Center at UMASS (Grant (U24-DK093000))National Science Foundation (U.S.) (Graduate Research Fellowship
The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network
Background: Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers.
Methods and Findings: Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientÅ› delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment.
Conclusion: The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects
HCV+ Hepatocytes Induce Human Regulatory CD4+ T Cells through the Production of TGF-β
Background: Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4 + regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown. Methodology/Principal Findings: HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4 + T cells. The production of IFN-c was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4 + T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV + hepatocytes upregulated the production of TGF-b and blockade of TGF-b abrogated Treg phenotype and function. Conclusions/Significance: These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses
Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance
The cytoplasmic polyadenylation element binding protein CPEB1 (CPEB) regulates germ cell development, synaptic plasticity, and cellular senescence. A microarray analysis of mRNAs regulated by CPEB unexpectedly showed that several encoded proteins are involved in insulin signaling. An investigation of Cpeb1 knockout mice revealed that the expression of two particular negative regulators of insulin action, PTEN and Stat3, were aberrantly increased. Insulin signaling to Akt was attenuated in livers of CPEB–deficient mice, suggesting that they might be defective in regulating glucose homeostasis. Indeed, when the Cpeb1 knockout mice were fed a high-fat diet, their livers became insulin-resistant. Analysis of HepG2 cells, a human liver cell line, depleted of CPEB demonstrated that this protein directly regulates the translation of PTEN and Stat3 mRNAs. Our results show that CPEB regulated translation is a key process involved in insulin signaling
CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance
Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3+ regulatory T cells. CTLA-4–deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4–deficient and –sufficient bone marrow (BM)–derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4−/− T cells in trans by CTLA-4–sufficient T cells is a reversible process that requires the persistent presence of FOXP3+ regulatory T cells with a diverse TCR repertoire. Based on gene expression studies, the regulatory T cells do not appear to act directly on T cells, suggesting they may instead modulate the stimulatory activities of antigen-presenting cells. These results demonstrate that CTLA-4 is absolutely required for FOXP3+ regulatory T cell function in vivo
Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, Interferon-α and dendritic cell vaccine
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50221, doi:10.1371/journal.pone.0050221.Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify additional immune therapeutic targets in patients with mRCC.This work was supported by grants from the National Institutes of Health (RO1 CA5648, R21CA112761, P20RR016437, and P30CA023108)
- …