442 research outputs found

    Phase transitions in social sciences: two-populations mean field theory

    Get PDF
    A new mean field statistical mechanics model of two interacting groups of spins is introduced and the phase transition studied in terms of their relative size. A jump of the average magnetization is found for large values of the mutual interaction when the relative percentage of the two populations crosses a critical threshold. It is shown how the critical percentage depends on internal interactions and on the initial magnetizations. The model is interpreted as a prototype of resident-immigrant cultural interaction and conclusions from the social sciences perspectives are drawn

    Analysis of weighted networks

    Full text link
    The connections in many networks are not merely binary entities, either present or not, but have associated weights that record their strengths relative to one another. Recent studies of networks have, by and large, steered clear of such weighted networks, which are often perceived as being harder to analyze than their unweighted counterparts. Here we point out that weighted networks can in many cases be analyzed using a simple mapping from a weighted network to an unweighted multigraph, allowing us to apply standard techniques for unweighted graphs to weighted ones as well. We give a number of examples of the method, including an algorithm for detecting community structure in weighted networks and a new and simple proof of the max-flow/min-cut theorem.Comment: 9 pages, 3 figure

    Generalized Master Equations for Non-Poisson Dynamics on Networks

    Full text link
    The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Consequently, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that the equation reduces to the standard rate equations when the underlying process is Poisson and that the stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature

    Universality in movie rating distributions

    Full text link
    In this paper histograms of user ratings for movies (1,...,10) are analysed. The evolving stabilised shapes of histograms follow the rule that all are either double- or triple-peaked. Moreover, at most one peak can be on the central bins 2,...,9 and the distribution in these bins looks smooth `Gaussian-like' while changes at the extremes (1 and 10) often look abrupt. It is shown that this is well approximated under the assumption that histograms are confined and discretised probability density functions of L\'evy skew alpha-stable distributions. These distributions are the only stable distributions which could emerge due to a generalized central limit theorem from averaging of various independent random avriables as which one can see the initial opinions of users. Averaging is also an appropriate assumption about the social process which underlies the process of continuous opinion formation. Surprisingly, not the normal distribution achieves the best fit over histograms obseved on the web, but distributions with fat tails which decay as power-laws with exponent -(1+alpha) (alpha=4/3). The scale and skewness parameters of the Levy skew alpha-stable distributions seem to depend on the deviation from an average movie (with mean about 7.6). The histogram of such an average movie has no skewness and is the most narrow one. If a movie deviates from average the distribution gets broader and skew. The skewness pronounces the deviation. This is used to construct a one parameter fit which gives some evidence of universality in processes of continuous opinion dynamics about taste.Comment: 8 pages, 5 figures, accepted for publicatio

    Cascades on clique-based graphs

    Get PDF
    peer-reviewedWe present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of highly clustered random graphs introduced by Gleeson [J. P. Gleeson, Phys. Rev. E 80, 036107 (2009)]. A condition for the existence of global cascades is also derived. Applications of this approach include analyses of percolation, and Watts's model. We show how our techniques can be used to study the effects of in-group bias in cascades on social networks.PUBLISHEDpeer-reviewe

    Collective Decision Dynamics in the Presence of External Drivers

    Get PDF
    We develop a sequence of models describing information transmission and decision dynamics for a network of individual agents subject to multiple sources of influence. Our general framework is set in the context of an impending natural disaster, where individuals, represented by nodes on the network, must decide whether or not to evacuate. Sources of influence include a one-to-many externally driven global broadcast as well as pairwise interactions, across links in the network, in which agents transmit either continuous opinions or binary actions. We consider both uniform and variable threshold rules on the individual opinion as baseline models for decision-making. Our results indicate that 1) social networks lead to clustering and cohesive action among individuals, 2) binary information introduces high temporal variability and stagnation, and 3) information transmission over the network can either facilitate or hinder action adoption, depending on the influence of the global broadcast relative to the social network. Our framework highlights the essential role of local interactions between agents in predicting collective behavior of the population as a whole.Comment: 14 pages, 7 figure

    Attention on Weak Ties in Social and Communication Networks

    Full text link
    Granovetter's weak tie theory of social networks is built around two central hypotheses. The first states that strong social ties carry the large majority of interaction events; the second maintains that weak social ties, although less active, are often relevant for the exchange of especially important information (e.g., about potential new jobs in Granovetter's work). While several empirical studies have provided support for the first hypothesis, the second has been the object of far less scrutiny. A possible reason is that it involves notions relative to the nature and importance of the information that are hard to quantify and measure, especially in large scale studies. Here, we search for empirical validation of both Granovetter's hypotheses. We find clear empirical support for the first. We also provide empirical evidence and a quantitative interpretation for the second. We show that attention, measured as the fraction of interactions devoted to a particular social connection, is high on weak ties --- possibly reflecting the postulated informational purposes of such ties --- but also on very strong ties. Data from online social media and mobile communication reveal network-dependent mixtures of these two effects on the basis of a platform's typical usage. Our results establish a clear relationships between attention, importance, and strength of social links, and could lead to improved algorithms to prioritize social media content

    Academic team formation as evolving hypergraphs

    Get PDF
    This paper quantitatively explores the social and socio-semantic patterns of constitution of academic collaboration teams. To this end, we broadly underline two critical features of social networks of knowledge-based collaboration: first, they essentially consist of group-level interactions which call for team-centered approaches. Formally, this induces the use of hypergraphs and n-adic interactions, rather than traditional dyadic frameworks of interaction such as graphs, binding only pairs of agents. Second, we advocate the joint consideration of structural and semantic features, as collaborations are allegedly constrained by both of them. Considering these provisions, we propose a framework which principally enables us to empirically test a series of hypotheses related to academic team formation patterns. In particular, we exhibit and characterize the influence of an implicit group structure driving recurrent team formation processes. On the whole, innovative production does not appear to be correlated with more original teams, while a polarization appears between groups composed of experts only or non-experts only, altogether corresponding to collectives with a high rate of repeated interactions

    Correlation between centrality metrics and their application to the opinion model

    Get PDF
    In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The m order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the B_{n}, the closeness, and the components of x_{1} are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between x_{1} and the 2nd-order degree mass is larger than that between x_{1} and a lower order degree mass. Finally, we investigate the effect of the inflexible antagonists selected based on different centrality metrics in helping one opinion to compete with another in the inflexible antagonists opinion model. Interestingly, we find that selecting the inflexible antagonists based on the leverage, the B_{n}, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the B_{n}, as well as a high centrality similarity between the leverage and the degree.Comment: 20 page

    Cooperation for public goods under uncertainty

    Full text link
    Everyone wants clean air, peace and other public goods but is tempted to freeride on others' efforts. The usual way out of this dilemma is to impose norms, maintain reputations and incentivize individuals to contribute. In situations of high uncertainty, however, such as confrontations of protesters with a dictatorial regime, the usual measures are not feasible, but cooperation can be achieved nevertheless. We use an Ising model with asymmetric spins that represent cooperation and defection to show numerically how public goods can be realized. Under uncertainty, people use the heuristic of conformity. The turmoil of a confrontation causes some individuals to cooperate accidentally, and at a critical level of turmoil, they entail a cascade of cooperation. This critical level is much lower in small networks
    • …
    corecore