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Abstract. In recent decades, a number of centrality metrics describing network properties of nodes have
been proposed to rank the importance of nodes. In order to understand the correlations between centrality
metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity
metric, we first study the correlation between centrality metrics in terms of their Pearson correlation
coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality
metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node
is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find
that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency
matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass,
respectively, in both network models and real-world networks. We then theoretically prove that the Pearson
correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that
between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the
inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with
another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible
contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition
than using other centrality metrics in all types of networks. This observation is supported by our previous
observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well
as a high centrality similarity between the leverage and the degree.

1 Introduction

Recent research has explored social dynamics [1–3] by
using complex networks in which nodes represent peo-
ple/agents and links the associations between them. Such
centrality metrics as degree and betweenness have been
studied in dynamic processes [4–7], such as opinion com-
petition, epidemic spreading, and rumor propagation on
complex networks. These studies used centrality metrics
to identify influential nodes [4–6], such as the source
nodes from which a virus spreads and the nodes with
high spreading capacity, as well as to select which nodes
are to be immunized when a virus is prevalent [7]. Nu-
merous centrality metrics have been proposed. Degree,
betweenness, closeness, and principal eigenvector of the
adjacency matrix (which is shortly called the principal
eigenvector in this work) are the most popular centrality
metrics [4,8–13]. Several new centrality metrics have been
introduced in a number of different fields recently. Kitsak
et al. [5] studied the SIS and SIR spreading models on
four real-world networks and proposed that the k-shell
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index is a better indicator for the most efficient spreaders
(nodes) than degree or betweenness. Joyce et al. [14] pro-
posed a new centrality metric – leverage – for identifying
neighborhood hubs (the most highly-connected nodes) in
functional brain networks. Leverage centrality identifies
nodes that are connected to more nodes than their near-
est neighbors. In addition to considering these widely-used
centrality metrics, we here propose a new centrality met-
ric, degree mass. The mth-order degree mass of a node
is defined as the sum of the weighted degree of its m-hop
neighborhood1. If the degree of a node and of its neighbors
are all high, the node has a high degree mass.

Centrality metrics have been compared in various
networks, such as sampled networks, biological net-
works, food webs, and vocabulary networks in litera-
ture [4,15–18]. Comin et al. [4] compared the centrality
metrics characterizing the performances of nodes in such
dynamic processes as virus spreading. Kim and Jeong [15]
compared the reliability of rank orders using centrality

1 The m-hop neighborhood of a node i includes the node i
and all nodes no further away than m hops from i.
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metrics in sampling networks. The correlations between
centrality metrics have been studied in biological net-
works [16,17]. However correlations between centrality
metrics are still not well understood. If correlations be-
tween centrality metrics were better understood, we might
be able to rank the nodes in a network by using the cen-
trality metrics with a low computational complexity in-
stead of the ones with a high computational complexity.
To investigate the correlation between any two centrality
metrics, we compute their Pearson correlation coefficient
and their similarity in ranking nodes in both network mod-
els and real-world networks. The two methods have been
applied to study the correlation between metrics in ref-
erences [19–23]. In this work (i) we consider Erdős-Rényi
(ER) networks2 with a binomial degree distribution [24]
and scale-free (SF) networks3 with a power-law degree
distribution [25,26]. Studying these two network models
allows us to understand how the degree distribution influ-
ences correlations between the centrality metrics. (ii) We
further explore correlations in 34 real-world networks with
differing numbers of nodes and links. (iii) We theoretically
compare the Pearson correlation coefficients between the
principal eigenvector and the degree masses.

Recently there has been considerable interest in under-
standing how two competing opinions [27–31] evolve in a
population. In this work we apply our centrality metrics to
an inflexible contrarian opinion (ICO) model [32] in which
only two opinions (denoted A and B) exist, with the goal
of helping one opinion (opinion B) as it competes with
with the other opinion (opinion A). At the initial time,
opinions are randomly assigned to all nodes (with a frac-
tion f of nodes holding opinion A and a fraction 1 − f
of nodes holding opinion B). At each step, each agent si-
multaneously and in parallel adopts the opinion of the
majority of its nearest neighbors and itself, and if there
is a tie, the agent does not change its opinion. After the
system reaches a steady state, a fraction po of agents with
opinion A is placed among the inflexible contrarians per-
manently holding opinion B, which can affect the opinion
of their nearest neighbors. It is known that the size of
the giant component of agents with opinion A can be de-
creased or even destroyed by the inflexible contrarians [32].
Li et al. [32] have selected the inflexible contrarians in
ER and SF networks either randomly or based on degree.
Here we choose inflexible contrarians using all the central-
ity metrics we have considered in both modelled networks
and real-world networks. We compare the efficiencies of
these centrality metrics in reducing the size of the largest
opinion A cluster and find that strongly correlated cen-
trality metrics have approximately the same efficiency in
both modelled networks and real-world networks. Thus a
high-complexity centrality metric could be approximated
by a strongly correlated low-complexity centrality metric.

2 An Erdős-Rényi random graph Gp(N) can be generated
from a set of N nodes by randomly assigning a link with
probability p to each pair of nodes.

3 A scale-free network is characterized by a power-law degree
distribution Prob[D = k] ∼ k−α, with kmin ≤ k < kmax. Here,
we choose kmin = 2, kmax as the natural cutoff and α = 2.5.

This paper is organized as follows. In Section 2 we
introduce the centrality metrics. In Section 3 we study
the Pearson correlation coefficient and the centrality
similarity between any two centrality metrics in both net-
work models and real-world networks. In Section 4 the
Pearson correlations between the degree masses and the
principal eigenvector are theoretically analysed. In Sec-
tion 5 the centrality metrics are applied in choosing the
inflexible contrarians in the ICO model and the efficiencies
of the centrality metrics are compared.

2 Definition of network centrality metrics

Centrality metrics quantify node properties in a net-
work. Here we first review some centrality metrics
that are widely used or have been recently pro-
posed [4,5,8–12,14,33]. We then propose a new centrality
metric, which we call degree mass. Let G(N , L) be a net-
work, where N is the set of nodes and L is the set of links.
The number of nodes is denoted by N = |N | and the num-
ber of links by L = |L|. The network G can be represented
by an N × N symmetric adjacency matrix A, consisting
of elements aij , which are either one or zero depending
on whether node i is connected to node j or not. The net-
works mentioned in this paper are simple, unweighted and
do not have self-loops or multiple links.

• Principal eigenvector x1

The largest eigenvalue of the adjacency matrix A is λ1,
also called the spectral radius [34]. The principal eigen-
vector x1 corresponding to the spectral radius λ1 satisfies
the eigenvalue equation

Ax1 = λ1x1.

Component j of the principal eigenvector is denoted
by (x1)j . The X1 is the element in the principal eigen-
vector that corresponds to a random node.

• Betweenness Bn

Betweenness was introduced independently by
Anthonisse [35] in 1971 and Freeman [9] in 1977.
The betweenness of a node i is the number of shortest
paths between all possible pairs of nodes in the network
that traverse the node

bni =
∑

s�=i�=d∈N

σsd(i)
σsd

,

where σsd(i) is the number of shortest paths that pass
through node i from node s to node d, and σsd is the
total number of shortest paths from node s to node d.
The betweenness Bn incorporates global information and
is a simplified quantity for assessing the traffic carried by a
node. Assuming that a unit packet is transmitted between
each node pair, the betweenness bni is the total number
of packets passing through node i [36].
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• Closeness Cn

The closeness [37] of a node i is the average hopcount
of the shortest paths from node i to all other nodes. It
measures how close a node is to all the others. The most
commonly used definition is the reciprocal of the total
hopcount,

cni =
N − 1∑

j∈N\{i} Hij
,

where Hij is the hopcount of the shortest path between
nodes i and j, and

∑
j∈N\{i} Hij is the sum of the hop-

count of the shortest paths from node i to all other nodes.
Closeness has been used to identify central metabolites in
metabolic networks [38].

• K-shell index Ks

The k-shell decomposition of a network allows us to iden-
tify the core and the periphery of the network. The k-shell
decomposition proceedure is as follows:

(1) Remove all nodes of degree d = 1 and also their links.
This may reduce the degree of other nodes to 1.

(2) Remove nodes whose degree has been reduced to 1
and their links until all of the remaining nodes have
a degree d > 1. All of the removed nodes and the
links between them constitute the k-shell with an index
ks = 1.

(3) Remove nodes with degree d = 2 and their links in the
remaining networks until all of the remaining nodes
have a degree d > 2. The newly removed nodes and
the links between them constitute the k-shell with an
index ks = 2, and subsequently for higher values of ks.

The k-shell is a variant of the k-core [39,40], which is
the largest subgraph with minimum degree of at least k.
A k-core includes all k-shells with an index of ks =
0, 1, 2, . . . , k. An O(m) algorithm for k-shell network de-
composition was proposed in reference [41]. The k-shell
index of the original infected node is a better predictor
of the infected population in the susceptible-infectious-
recovered (SIR) epidemic spreading process than other
centrality metrics, such as the degree [5].

• Leverage Ln

Joyce et al. [14] introduced leverage centrality in order to
identify neighborhood hubs in functional brain networks.
The leverage measures the extent of the connectivity of a
node relative to the connectivity of its nearest neighbors.
The leverage of a node i is defined

lni =
1
di

∑

j∈Ni

di − dj

di + dj
,

where Ni is the directly connected neighbors of the node i.
With the definition of lni and the range [1, N − 1] of the
degree di in connected networks, the leverage of a node i
is bounded by −1 + 2di

di+(N−1) ≤ lni ≤ 1− 2
di+1 . Hence the

range of the leverage lni is [−1 + 2/N, 1 − 2/N ] and the
equality occurs in star graphs and complete graphs KN .

The leverage of a node is high when it has more connec-
tions than its direct neighbors. Thus a high-degree node
with high-degree nearest neighbors will probably have a
low leverage.

• Degree mass D(m)

The degree of a node i in a network G is the number of
its direct neighbors,

di =
N∑

j=1

aij = (Au)i,

where u = (1, 1, . . . , 1)T is the all-one vector. Here we
propose a new set of centrality metrics, the degree mass,
which is a variant of degree centrality. The mth-order de-
gree mass of a node i is defined as the sum of the weighted
degree of its m-hop neighborhood,

d
(m)
i =

m+1∑

k=1

(
Aku

)
i
=

N∑

j=1

(
m∑

k=0

Ak

)

ij

dj ,

where m ≥ 0. The weight of the degree dj is the number of
walks4 of length no longer than m from node i to node j.
The weight of dj is larger than the weight of dl when node l
is farther than node j from node i. The mth-order degree
mass vector is defined d(m) = [d(m)

1 , d
(m)
2 , . . . , d

(m)
N ]. The

0th-order degree mass is the degree centrality. The 1st-
order degree mass of node i is the sum of the degree of
node i and the degree of its nearest neighbors. When m
is large, the mth-order degree mass is proportional to the
principal eigenvector.

3 Correlations between centrality metrics

We investigate the correlations between the centrality
metrics introduced in Section 2, in both network mod-
els and real-world networks. The network models include
the Erdős-Rényi (ER) network and the scale-free (SF) net-
work. ER networks are characterized by a binomial degree
distribution with Prob [D = k] =

(
N−1

k

)
pk(1 − p)N−1−k,

where N is the number of nodes and p is the probability
that each node pair is connected. A SF network [25,42] has
a power-law degree distribution with Prob[D = k] ∼ k−α,
k ∈ [kmin, kmax], where kmin is the smallest degree, kmax

is the degree cutoff, and α is the exponent characterizing
the broadness of the distribution. In this work we use the
natural cutoff at approximately N1/(α−1) and kmin = 2.
We consider 34 real-world networks, e.g., airline connec-
tions, electrical power grids, and coauthorship collabora-
tions. The descriptions and properties of these real-world
networks are given in Appendix A. We study the correla-
tions between any two centrality metrics using the Pearson
correlation coefficient and the centrality similarity.

4 A walk from i to j is any sequence of edges that allows back
and forth movement and repeated visits to the same node.
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Fig. 1. Pearson correlation coefficients (a) between the principal eigenvector and the degree masses: ρ(X1, D) (in circle marks),
ρ(X1, D

(1)) (in rectangle marks), and ρ(X1, D
(2)) (in triangle marks); (b) between the closeness and the degree masses: ρ(Cn, D)

(in circle marks), ρ(Cn, D(1)) (in rectangle marks), and ρ(Cn, D(2)) (in triangle marks); (c) between betweenness and degree
masses: ρ(Bn, D) (in circle marks), ρ(Bn, D(1)) (in rectangle marks), and ρ(Bn, D(2)) (in triangle marks), in 34 real-world
networks.

3.1 Pearson correlation coefficients between centrality
metrics

Here we explore the linear correlation between the central-
ity metrics using numerical simulations in both ER and SF
networks as well as in real-world networks. The results in
Appendix B indicate that strong linear correlations do ex-
ist between certain centrality metrics in both ER and SF
networks, and that network size has little influence on the
correlations. Note that the k-shell index is weakly corre-
lated with all the other centrality metrics. This might be
the case because the k-shell indices of all nodes are similar
to each other in binomial networks. We note the following
seemingly universal relations between the degree masses
and three centrality metrics, the principal eigenvector x1,
the closeness Cn and the betweenness Bn, as:

⎧
⎪⎨

⎪⎩

ρ
(
X1, D

(2)
)

> ρ
(
X1, D

(1)
)

> ρ (X1, D) ,

ρ
(
Cn, D(1)

)
> ρ

(
Cn, D(2)

)
> ρ (Cn, D) ,

ρ (Bn, D) > ρ
(
Bn, D(2)

)
> ρ

(
Bn, D(1)

)
,

in most real-world networks (see Figs. 1a–1c). The same
results can be found in both ER and SF networks
(see Appendix B). We theoretically prove the inequality
ρ(X1, D

(2)) > ρ(X1, D
(1)) > ρ(X1, D) in ER networks in

Section 4.
Almost all of the Pearson correlation coefficients

ρ(X1, D
(2)), ρ(Cn, D(1)), and ρ(Bn, D) are large (>0.95)

in both ER and SF networks (see Figs. B.1 and B.2) and
are also large (>0.6) in most real-world networks (see
Fig. 1). The betweenness of a power-law distributed net-
work also follows a power-law distribution [43]. This sup-
ports the strong linear correlation between the between-
ness Bn and the degree D in SF networks [17].

3.2 Centrality similarities MA,B(Υ) between centrality
metrics

Different centrality metrics rank the nodes in different
orders within a network. The centrality similarity was
proposed in reference [23] to quantify the similarity of
centrality metrics in ranking nodes.

Definition. In a graph G(N, L) assume we ob-
tain two node rankings, [a(1), a(2), . . . , a(N)] and

[b(1), b(2), . . . , b(N)], according to centrality metrics
A and B, where a(j) or b(j) is the node whose centrality
metric A or B is the jth largest in the networks. The
centrality similarity MA,B(Υ ) is the percentage of the
nodes in [a(1), a(2), . . . . . . , a(ΥN)], which are also in
[b(1), b(2), . . . . . . , b(ΥN)], where Υ ∈ [0, 1].

The measure MA,B(Υ ) gives the percentage of over-
lapping nodes from the top 100Υ% of nodes, ranked by
the centrality metrics A and B, respectively. The range
of MA,B(Υ ) is between [0, 1]. If the 100Υ% of nodes cho-
sen by centrality metric A are not at all in the 100Υ%
of nodes chosen by centrality metric B, MA,B(Υ ) = 0.
It means that the most important (top 100Υ%) nodes
chosen by the two centrality metrics are completely dif-
ferent, i.e., the centrality metrics A and B differ greatly.
When all nodes are chosen (Υ = 1) there is a full overlap,
which indicates that MA,B(1) = 1. For a given Υ < 1, a
larger MA,B(Υ ) represents a stronger correlation between
the two centrality metrics A and B.

3.2.1 Centrality similarities in network models

We study the centrality similarity MA,B(Υ ) between any
two centrality metrics5 in 103 network realizations of ER
networks and SF networks with N = 104 and Υ = [0.001,
0.01, 0.1].

We observe that in both ER and SF networks, the
MBn,D(Υ ) is notably larger than the centrality sim-
ilarity between Bn and any other centrality metric;
MCn,D(1)(Υ ) > MCn,D(2)(Υ ) > MCn,D(Υ ); and the
centrality similarities Mx1,D(1)(Υ ) and Mx1,D(2)(Υ ) are
both large (see Fig. 2). In ER networks, Mx1,D(2)(Υ ) >
Mx1,D(1)(Υ ) > Mx1,D(Υ ). The k-shell index has low sim-
ilarity with other metrics in ER networks for the same
reason mentioned in Section 3.1. All these observations
agree with what we have found using the Pearson corre-
lation coefficients in Section 3.1.

5 Our study shows that the centrality similarity MA,B(Υ ) in-
creases with the increase of Υ in ER networks, but decreases
with the increase of Υ in SF networks. Note that this observa-
tion holds only for small Υ and, if Υ is around 1, MA,B(Υ ) = 1
in all networks.
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Fig. 2. Centrality similarities between centrality metrics in
network models: (a) for ER networks and (b) for SF networks.
The x-axis is the correlation index (see Appendix B).

Fig. 3. Number of networks (among the 34 real-world net-
works) in which MA,B(Υ ) is the highest among the centrality
similarities between A and all other centrality metrics, when
Υ = 5%. The centrality metric A is given by the x-axis label,
and B is reflected by the pattern described in the box on right
side. Take the betweenness Bn as an example. The centrality
similarities between Bn and all the other metrics are compared
with each other to find the largest similarity in each real-world
network. For instance, the MBn,Cn(Υ ) is the largest central-
ity similarity in ‘Electric s208’ network, so that one is counted
into the leftmost bar of Bn (with Cn).

3.2.2 Centrality similarities in real-world networks

For the 34 real-world networks the percentage Υ should
be larger than 3%, since the smallest network only has 35
nodes. We compare the similarity between each centrality
metric (e.g., Bn) and all other metrics to determine which
metric is the closest to the centrality metric (e.g., Bn).
In Figure 3 the height of each bar indicates the number of
networks in which MA,B(Υ ) is the highest among the cen-
trality similarities between A and all the other centrality
metrics. The bar chart shows that the D, D(1), and D(2)

are, respectively, most similar to Bn, Cn, and x1 in most

real-world networks, which is consistent with what is ob-
served in the network models. We also observe that either
MLn,D(Υ ) or MLn,Bn(Υ ) is the largest among the central-
ity similarities between Ln and all other metrics in most
real-world networks.

4 Theoretical analysis

The above simulations indicate that the three lowest-order
degree masses, with a low computational complexity, are
strongly correlated with the betweenness, the closeness,
and the components of the principal eigenvector, all of
which are complex to compute. We first prove that the
high-order (m → ∞) degree mass is proportional to the
principal eigenvector x1 in any network. Next we prove
that when m is small the correlation between degree mass
and the principal eigenvector increases with an increase
in m, i.e., ρ(X1, D

(2)) ≥ ρ(X1, D
(1)) ≥ ρ(X1, D). We

then apply the generating function method [44,45] to an-
alyze such statistical properties of the degree masses as
expectation and variance (see Appendix C).

Theorem 1. The mth-order degree mass vector d(m) is
proportional to the principal eigenvector x1 in any network
with a sufficiently large spectral gap when m → ∞.

Proof. The mth-order degree mass vector d(m) is:

d(m) =
m+1∑

k=1

(
Aku

)
=

m+1∑

k=1

N∑

j=1

λk
j xj

(
xT

j u
)

=
N∑

j=1

(
λj

λm+1
j − 1
λj − 1

)(
xT

j u
)
xj

=
(
λ1

λm+1
1 −1
λ1 − 1

)(
xT

1 u
)
x1+

N∑

j=2

(
λj

λm+1
j −1
λj−1

)(
xT

j u
)
xj

=
(
λ1

λm+1
1 − 1
λ1 − 1

)(
xT

1 u
)
x1

(
1 + O

( N∑

j=2

( |λj |
|λ1|

)m))
.

Literature [34] has proved that xT
1 u > xT

j u for all 1 <

j ≤ N . Accordingly, the term
∑N

j=2(λj
λm+1

j −1

λj−1 )(xT
j u)xj

is small in the graphs with a large spectral gap (λ1 −
λ2). When m increases, d(m) → (λ1

λm+1
1 −1
λ1−1 )(xT

1 u)x1.
Moreover, when m is large, especially when m → ∞,
O(
∑N

j=2(
|λj |
|λ1| )

m) → 0 in any graph. Thus we find that
d(m) tends to be proportional to x1 when m increases in
networks with a large spectral gap, and d(m) ∼ λ

(m+1)
1 (x1)

in networks when m → ∞.

Lemma 1. In large sparse Erdős-Rényi (ER) networks,
ρ(D(2), X1) ≥ ρ(D(1), X1) ≥ ρ(D, X1).

Proof. See Appendix C.
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5 Application to the inflexible contrarian
opinion (ICO) model

In this section we apply the studied centrality metrics to
select the inflexible contrarians in the inflexible contrar-
ian opinion (ICO) model [32] to help one opinion to com-
pete with another. Both network models and three social
networks will be considered.

5.1 The ICO model

The ICO model is a variant of the non-consensus opinion
(NCO) model [29]. The ICO and NCO models are both
opinion competition models in which two opinions exist
and compete with each other. In the NCO model opinions
are randomly assigned to all agents (nodes). At time t = 0
each agent is assigned opinion A with a probability f and
opinion B with a probability 1 − f . At each subsequent
time step each agent adopts the opinion of the majority
of its nearest neighbors and itself. When there is a tie, the
opinion of the agent does not change. All of the updates
are made simultaneously in parallel at each step. The sys-
tem reaches a state in which the opinions A and B coexist
and are stable when f is above a critical threshold fc.

When the NCO model is in the stable state, the ICO
model further selects a fraction po of agents with opin-
ion A to be the inflexible contrarians who will hold opin-
ion B, will never change their opinion, but will influence
the opinion of other agents. The two opinions then com-
pete with each other according to the update rules of the
NCO model. The system will reach a new stable state by
following these opinion dynamics.

We use S1 and S2 to denote the size of the largest and
the second largest clusters of agents with opinion A in the
new stable state. A phase transition threshold fc separates
two different phases of the stable state. When f > fc, a
giant component of agents with opinion A exists and the
coexistence of opinions A and B is stable. When f ≤ fc, no
giant component of agents with opinion A exists (S1 = 0).
The fc depends on po. When po = 0, the ICO model
clearly reduces to the classical NCO model and they have
the same critical threshold fc. When 0 < po < p∗, the
threshold fc of the ICO model increases with po, but the
size S1 for the finial stable state decreases with po. When p
is above a certain value p∗, the phase transition no longer
occurs, and the giant component of agents with opinion A
is completely destroyed (S1 = 0).

5.2 Strategies of selecting inflexible contrarians using
centrality metrics

The final stable state of the ICO model is affected not
only by the percentage po, but also by how inflexible con-
trarian agents are selected. Here we select the inflexible
contrarians based on their centrality metrics. Li et al. [32]
studied the ICO model by choosing the inflexible contrar-
ian agents with opinion A either randomly or according to
highest degree. The degree strategy is significantly more

1.0

0.8

0.6

0.4

0.2

0.0

s 1

1.00.80.60.40.20.0
f

10x10
-3

8
6
4
2
0

s 2

1.00.80.60.40.2
f

Leverage

po = 0

po = 0.1

po = 0.2

po = 0.3

Fig. 4. An example: the results of leverage strategy. Plot of
s1 ≡ S1/N as a function of f for different values of po for ER
networks with E[D] = 4 and N = 104. We denote by S1 the size
of the largest A opinion cluster in the steady-state. Different
marks show the results of ICO model with different po: po =
0(◦), po=0.1(�), po = 0.2(�), po = 0.3(�), po = 0.4(∗), po =
0.5(♦), po = 0.6(�). The insets plot the s2 ≡ S2/N , where S2

is the size of the second largest A opinion cluster, as a function
of the f for different values of po.

effective than the random strategy in reducing the size S1

of the largest opinion A cluster in the stable state when
po is the same. Here we want to determine which central-
ity metric used to pick the inflexible contrarians reduces
S1 most efficiently. We also want to determine whether
the S1 decrease is similar when the inflexible contrari-
ans are chosen based on two strongly correlated (with
a large Pearson correlation coefficient or a high central-
ity similarity) centrality metrics. Here the inflexible con-
trarians are chosen as nodes with highest (i) betweenness;
(ii) degree; (iii) 1st-order degree mass; (iv) 2nd-order de-
gree mass; (v) eigenvector component; (vi) k-shell index;
or (vii) leverage or (viii) chosen randomly.

5.3 Comparison of inflexible contrarian selection
strategies

We first compare the efficiency in decreasing the size S1

of the largest opinion A cluster in ER and SF networks
when choosing the inflexible contrarians using different
centrality metrics. We consider ER networks (N = 104

or 105) with E[D] = 4, and SF networks (N = 104 or 105)
with α = 2.5, and perform all the simulations on 103 net-
work realizations. Figure 4 shows a plot of s1 = S1/N
as a function of f for different values of po in ER net-
works (with N = 104) using a leverage strategy. The
size s2 = S2/N shows a sharp peak, a characteristic of
a second-order phase transition, in the insets of Figure 4.
As po increases, fc shifts to a larger value and the largest
cluster becomes significantly smaller. When p > p∗, the
giant component with opinion A disappears, i.e., S1 = 0.
For example, the p∗ value for the leverage strategy is be-
tween 0.3 and 0.4 (see Fig. 4). A small p∗ implies that
the inflexible contrarians can efficiently destroy the largest
opinion A cluster. We can compare the efficiency of the
strategies in decreasing S1 by the value of p∗. When we
compare strategies in the ICO model with the same po,
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Fig. 5. Plot of fc as a function of po for strategies 1 to 8: (a) in ER graphs with N = 104, E[D] = 4; (b) in SF graphs with
N = 104, Dmin = 2, α = 2.5.
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Fig. 6. Plot of fc as a function of po for strategies in social networks: (a) in network of coauthorships between scientists posting
preprints on ConMat E-Print Archives between 1995 to 1999; (b) in network of coauthorships between scientists posting preprints
on ConMat E-Print Archives between 1995 to 2003; (c) in network of coauthorships between scientists posting preprints on
Astrophysics E-Print Archives between 1995 to 1999.

a larger phase transition fc for a strategy indicates that
the inflexible contrarians chosen using this strategy de-
creases S1 more efficiently. Figure 5a plots the phase tran-
sition fc as a function of po. Note that the efficiency of
each strategy is ranked in decreasing order as: Leverage,
Degree, Betweenness, 1st-order Degree mass, 2nd-order
Degree mass, k-shell index, Principal Eigenvector, and
Random. The same result can be also found in ER and
SF networks with N = 105.

We find that all strategies are more efficient in SF net-
works than in ER networks of the same size. We base
this on two observations. First, the relative change of fc

with po for all strategies in SF networks is larger than it
is in ER networks. Second, the p∗ for all strategies in SF
is much smaller than it is in ER networks. The reason
for this may be that (i) hubs can be readily selected as
inflexible contrarians when using centrality metrics in SF
networks, and (ii) hubs can strongly influence the opinion
of their large number of nearest neighbors.

Figure 6 compares these centrality metrics in real-
world networks, i.e., the ConMat 95-99 network, the Con-
Mat 95-03 network, and the Astro Ph network. Note that
the inflexible contrarians selected using the leverage Ln,
the betweenness Bn, and the degree D are the most ef-
ficient in helping opinion B win the competition. The
similar behaviors of the three strategies are supported
by the large Pearson correlation coefficient ρ(Bn, D)
and the large centrality similarities MBn,D(Υ ), MLn,D(Υ )
and MLn,Bn(Υ ).

In both network models and real-world networks,
strongly correlated centrality metrics tend to perform sim-
ilarly. For example, we have discovered both numerically

and theoretically that ρ(D(2), X1) ≥ ρ(D(1), X1). Cor-
respondingly, the principal eigenvector x1 strategy per-
forms closer to the 2nd-order degree mass D(2) than the
1st-order degree mass D(1) in the ICO model.

6 Conclusion

In this paper we have studied the correlation between
widely studied and recently proposed centrality metrics
in numerous real-world networks as well as in network
models, i.e., as in Erdős-Rényi (ER) random networks
and scale-free (SF) networks. A strong correlation be-
tween two centrality metrics indicates the possibility of
approximating one centrality metric, usually the one with
a higher computational complexity, using the other. We
study the correlations between the centrality metrics us-
ing the Pearson correlation coefficient and the centrality
similarity. An important finding is that the degree D, the
1st-order degree mass D(1), and the 2nd-order degree mass
D(2) are strongly correlated with the betweenness Bn, the
closeness Cn, and the principal eigenvector x1, respec-
tively. This observation is partially supported by our an-
alytical proof that ρ(X1, D

(2)) > ρ(X1, D
(1)) > ρ(X1, D).

We have introduced the degree mass D(m) as a new
network centrality metric. The 0th-order degree mass is
the degree and the high-order (m → ∞) degree mass
is proportional to the principal eigenvector x1. We also
find that the influence of network size (the number N of
nodes) on the Pearson correlation coefficients is small. In
addition, the leverage Ln has high centrality similarities
with the degree D and the betweenness Bn. We use these
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centrality metrics to select the inflexible contrarians in the
ICO model to help one opinion to compete with the other.
The leverage Ln turns out to be the most efficient strat-
egy in both network models and real-world networks. We
also find that strongly correlated metrics perform similarly
in the ICO model. This suggests that the metrics with a
low computational complexity, such as the degree D and
the leverage Ln, could be used to approximate more com-
plex metrics, e.g., the betweenness Bn, to locate impor-
tant nodes in complex networks. Examples of important
nodes would include inflexible contrarians in opinion prop-
agation networks and nodes that should be immunized in
disease transmission networks.

The authors are grateful to Shlomo Havlin for discussion
and useful comments. This work has been supported by the
European Commission within the framework of the CONGAS
project FP7-ICT-2011-8-317672 and the China Scholarship
Council (CSC).
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Appendix A: Description of the real-world networks

A.1 Descriptions

Table A.1. Descriptions of real-world networks.

Index Networks Descriptions

1 American airline The direct airport-to-airport American mileage a maintained by the U.S. Bureau

of Transportation Statistics.

2 American football This is the network of American football games between Division IA colleges during regular season

Fall 2000, as compiled by M. Girvan and M. Newman.

3 ARPANET80 The Advanced Research Projects Agency Network as seen in 1980.

4 Celegensneural Network representing the neural network of C. Elegans.

5 Dophins An undirected social network of frequent associations between 62 dolphins in a community living

off Doubtful Sound, New Zealand.

6 Dutch soccer Dutch football players represent the nodes. Two nodes are linked if they played together a match.

7 Gnutella 1 Gnutella snapshots. Four different crawls are available.

8 Gnutella 2

9 Gnutella 3

10 Gnutella 4

11 Karate Social network of friendships between 35 members of a karate club at a US university in the 1970.

12 LesMis Coappearance network of characters in the novel Les Miserables.

13 Surfnet SURFNET topology inferred from the switch interface interconnections.

14 Electric s208 ISCAS89 Sequential Benchmark Circuits. Each node represents a logical

operation implemented

15 Electric s420 physically. Links between them relate their inputs/outputs.

16 Electric s838

17 Epowergridl1 Power-grid infrastructure at three different levels of one city-area in Western Europe.

18 Epowergridl2

19 Epowergridl3

20 Erailwayl1 Railway infrastructure at two levels of one Western-European country

21 Erailwayl2

22 WordAdj Adjacency network of common adjectives and nouns in the novel David Copperfield

by Charles Dickens.

23 WordAdjEnglish Word-adjacency networks of texts in English, French and Japanese separately.

24 WordAdjFranch

25 WordAdjJapanese

26 Internet AS (01’) Internet snapshot retrieved from the merge of different data sources (BGP routing tables

and updates: Route Views, RIPE, Abilene, CERNET, BGP View).

27 Astro Ph Network of coauthorships between scientists posting preprints on the Astrophysics

E-Print Archive between Jan 1, 1995 and December 31, 1999.

28 SciMet Web of Science C. The citation network was created using the Web of Science database SciMet.

Networks created with the tool HistCite.

29 HighE-th High Energy Theory C. Network of coauthorships between scientists posting preprints

on the High-Energy Theory E-Print Archive between Jan 1, 1995 and December 31, 1999.

30 CondMat 95-03 Network of coauthorships between scientists posting preprints on the Condensed Matter E-Print

31 CondMat 95-99 Archive. We have two networks corresponding to different periods of time. Periods are Jan 1,

1995-December 31, 1999 and 2003 respectively.

32 Dutch Roadmap A graph representing the interconnection between cities in the Netherlands.

33 Network Science C Coauthorship network of scientists working on network theory and experiment, as compiled

by M. Newman in May 2006.

34 Next Generation A typical Next Generation Transport network.
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Table A.2. Properties of real-world networks. The real-world network index is shown in Table A.1. N is the number of nodes, L
is the number of links. E[H ] is the average shortest path, CG is the clustering coefficient of networks. ρD is the degree correlation
coefficient (called the assortativity) of networks. λ1 is the largest eigenvalue (called spectral radius) of the adjacency matrix of
the network. μN−1 is the second smallest Laplace eigenvalue (called spectral radius) of the networks. μ1/μN−1 is the ratio of
the largest eigenvalue μ1 and the second smallest eigenvalue μ1 of Laplacian matrix. RG is the effective graph resistance.

Index N L E[H] CG ρD λ1 μN−1 μ1/μN−1 RG E[D]
√

Var[D] Hmax

1 2179 31326 3.0262 0.4849 −0.0409 144.6112 0.2082 2.0675e3 1.6072e4 28.7526 56.6782 8

2 115 613 2.5082 0.4032 0.1624 10.7806 1.4590 10.7350 1.5086e3 10.6609 0.8835 4

3 71 86 6.4849 0.0141 −0.2613 2.7648 0.0374 170.2063 7.0158e3 2.4225 0.7442 17

4 297 2148 2.4553 0.2924 −0.1632 24.3655 0.8485 159.1562 1.3710e4 14.4646 12.9443 5

5 62 159 3.3570 0.2590 −0.0436 7.1936 0.1730 78.7034 1.8643e3 5.1290 2.9319 8

6 685 10 310 4.4583 0.7506 −0.0634 50.8428 0.1613 372.0373 3.1157e4 30.1022 21.1957 11

7 737 803 9.1351 0.0063 −0.1934 4.8913 0.0073 2.6292e3 1.4181e6 2.1791 2.0069 24

8 1568 1906 6.1037 0.0192 −0.0946 13.7828 0.0167 1.1205e4 4.0212e4 2.4311 5.5778 21

9 435 459 6.7085 0.0145 −0.3301 8.2281 0.0110 5.9278e3 4.2533e5 2.1103 5.1534 20

10 653 738 5.4513 0.0232 −0.2459 12.1145 0.0231 6.2319e3 6.6603e5 2.2603 7.0228 15

11 35 134 1.9126 0.3908 −0.5036 9.6253 1.7264 12.6030 221.6283 7.6571 4.7265 3

12 77 254 2.6411 0.5731 −0.1652 12.0058 0.2050 180.9490 3.0166e3 6.5974 6.0006 5

13 65 111 4.1236 0.0359 0.2288 5.0523 0.1137 92.7068 3.2979e3 3.4154 1.9046 10

14 122 189 4.9278 0.0591 −0.0020 4.1036 0.0836 135.2786 1.3082e4 3.0984 1.4395 11

15 252 399 5.8064 0.0651 −0.0059 4.3600 0.0512 297.3970 5.8313e4 3.1667 1.5340 13

16 512 819 6.8585 0.0547 −0.0300 5.0097 0.0285 809.9553 2.5149e5 3.1992 1.6296 15

17 3419 3953 21.1147 0.0120 −0.1283 5.1781 <e−5 >e15 4.8953e7 2.3124 1.8425 51

18 1205 1384 12.3547 0.0171 0.1082 4.8994 0.0022 9.1191e3 4.3901e6 2.2971 1.3609 31

19 395 441 13.6088 0.0201 −0.0235 4.4854 0.0020 8.8844e3 7.2535e5 2.2329 1.2834 42

20 8710 11 332 79.0448 0.0212 −0.0219 2.9865 <e−5 >e15 7.2107e8 2.6021 0.7696 213

21 689 778 34.1261 0.0731 0.0980 3.6926 7.7321e−3 1.0526e4 3.9229e6 2.2583 0.7658 84

22 112 425 2.5356 0.1728 −0.1293 13.1502 0.6950 72.0767 3.7941e3 7.5893 6.8512 5

23 7377 44205 2.7780 0.4085 −0.2366 109.4416 <e−5 9.1266e15 2.2149e7 11.9846 60.8260 8

24 8308 23 832 3.2189 0.2138 −0.2330 60.6735 0.1197 1.5810e4 3.9917e7 5.7371 34.8979 9

25 2698 7995 3.0771 0.2196 −0.2590 42.9980 <e−5 5.8851e15 4.3489e6 5.9266 24.6695 8

26 12 254 25 319 3.6214 0.2992 −0.1903 61.1066 <e−5 4.8974e15 1.0349e8 4.1324 33.5463 11

27 14 845 11 9652 4.7980 0.6696 0.2277 73.8868 0.0302 1.1966e4 7.2012e7 16.1202 21.7466 14

28 2678 10 368 4.1797 0.1736 −0.0352 20.4290 0.0853 1.9365e3 2.9549e6 7.7431 9.2480 12

29 5835 13 815 7.0264 0.5062 0.1852 18.0442 0.0214 2.3870e3 2.8800e7 4.7352 4.5571 19

30 27 519 11 6181 5.7667 0.6546 0.1657 40.3097 0.0276 7.3675e3 3.3638e8 8.4437 10.8110 16

31 13 861 44 619 6.6278 0.6514 0.1571 24.9822 0.0292 3.6992e3 1.1613e8 6.4381 6.7598 18

32 29 663 34 982 148.7102 0.0443 0.2462 3.4567 <e−5 >e15 1.5472e10 2.3586 0.6823 531

33 379 914 6.0419 0.7412 −0.0817 10.3755 0.0152 2.3053e3 1.4826e5 4.8232 3.9272 17

34 29 902 32 707 7109.8681 0.0306 −0.0355 49.5455 <e−5 >e15 2.1188e12 2.1876 9.7574 14 253

A.2 Properties of the real-world networks

The properties of real-world networks are shown in Ta-
ble A.2. The definition of these properties has been
described in detail in reference [22].

Appendix B: Pearson correlation coefficients
between centrality metrics

The correlation indexes mentioned in the following images
and tables are the indexes for pairs of centrality metrics: 1.
(Bn, Cn); 2. (Bn, D); 3. (Bn, x1); 4. (Bn, Ks); 5. (Bn, Ln);
6. (Bn, D(1)); 7. (Bn, D(2)); 8. (Cn, D); 9. (Cn, x1); 10.
(Cn, Ks); 11. (Cn, Ln); 12. (Cn, D(1)); 13. (Cn, D(2));
14. (D, x1); 15. (D, Ks); 16. (D, Ln); 17. (D, D(1)); 18.
(D, D(2)); 19. (x1, Ks); 20. (x1, Ln); 21. (x1, D

(1)); 22.
(x1, D

(2)); 23. (Ks, Ln); 24. (Ks, D
(1)); 25. (Ks, D

(2)); 26.
(Ln, D(1)); 27. (Ln, D(2)); 28. (D(1), D(2)).

Appendix C: Proof of Lemmas

Lemma 2. In an Erdős-Rényi (ER) random network
Gp(N), when N → ∞, the average 1st-order degree
mass is:

E
[
D(1)

]
= N

(
2p + p2N

)
, (C.1)

and the variance is:

Var
[
D(1)

]
= N

(
2p + 4p2N + p3N2

)
. (C.2)

The average and the variance of 2nd-order degree mass
are

E
[
D(2)

]
= N

(
2p + 3p2N + p3N2

)
, (C.3)

Var
[
D(2)

]
=N

(
2p + 14p2N + 17p3N2 + 7p4N3 + p5N4

)
.

(C.4)
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Table B.1. Pearson correlation coefficients among the centrality metrics in the real-world networks.

Index 1 2 3 4 5 6 7 8 9

ρ(Bn, Cn) ρ(Bn, D) ρ(Bn, x1) ρ(Bn, Ks) ρ(Bn, Ln) ρ(Bn, D(1)) ρ(Bn, D(2)) ρ(Cn, D) ρ(Cn, x1)

1 0.3667 0.5690 0.4119 0.3377 0.4027 0.4314 0.4224 0.7580 0.7684

2 0.8167 0.2813 0.1450 0.0871 0.3212 0.2230 0.2075 0.2913 0.2462

3 0.7129 0.7235 0.5358 0.3496 0.55585 0.7660 0.7593 0.4308 0.6851

4 0.4271 0.7805 0.5206 0.1822 0.4212 0.5388 0.6044 0.6997 0.7827

5 0.6657 0.5902 0.2835 0.4703 0.5639 0.5131 0.4850 0.7127 0.6979

6 0.3303 0.4909 0.0857 0.1523 0.4170 0.3807 0.3113 0.2701 −0.1604

7 0.4456 0.7292 0.4780 0.5182 0.4556 0.7575 0.7882 0.3973 0.5241

8 0.2196 0.9691 0.7006 0.2677 0.2679 0.3858 0.9416 0.2225 0.5469

9 0.2475 0.8839 0.4926 0.4667 0.4356 0.3533 0.8283 0.1763 0.5112

10 0.2338 0.9603 0.5848 0.3296 0.3880 0.2640 0.8839 0.1774 0.5733

11 0.8699 0.9651 0.8757 0.3782 0.8707 0.7999 0.9166 0.8853 0.9599

12 0.6287 0.7468 0.4231 0.2388 0.5317 0.5534 0.5468 0.7997 0.6812

13 0.7136 0.8743 0.7365 0.6345 0.6985 0.7999 0.7816 0.8290 0.9286

14 0.6408 0.7475 0.5595 0.2147 0.5551 0.7357 0.7227 0.6127 0.7987

15 0.5956 0.6933 0.5514 0.1583 0.4508 0.7084 0.7203 0.5541 0.7178

16 0.5323 0.7044 0.5410 0.1314 0.3913 0.6971 0.7661 0.4623 0.5633

17 0.2349 0.3843 0.1180 0.1189 0.1889 0.4101 0.4082 0.1082 0.0607

18 0.3210 0.7005 0.5517 0.0560 0.2686 0.6772 0.7144 0.2946 0.4627

19 0.3001 0.7081 0.4775 0.1060 0.2945 0.6371 0.6825 0.2395 0.4925

20 0.2664 0.1565 −0.0442 0.1979 0.1112 0.1805 0.1876 0.1477 0.0209

21 0.5022 0.3274 0.0364 0.3836 0.2548 0.2790 0.2540 0.2428 0.1141

22 0.6559 0.9150 0.8226 0.3517 0.6586 0.7891 0.8444 0.8410 0.9245

23 0.1880 0.9225 0.6525 0.2068 0.2642 0.4157 0.7765 0.3535 0.6528

24 0.1874 0.9714 0.8047 0.2729 0.2636 0.4403 0.9385 0.2625 0.6215

25 0.2747 0.9660 0.7859 0.3249 0.3584 0.5266 0.8972 0.3868 0.6880

26 0.1382 0.9826 0.7994 0.3292 0.2290 0.3441 0.9582 0.1631 0.5776

27 0.3764 0.6787 0.4353 0.2869 0.4631 0.5670 0.5270 0.6109 0.4220

28 0.4068 0.8185 0.6959 0.3147 0.4401 0.7143 0.7605 0.6741 0.7030

29 0.4526 0.7798 −0.0109 0.3574 0.5079 0.6700 0.5803 0.5774 0.0119

30 0.3801 0.7534 0.3753 0.3152 0.4488 0.5933 0.5173 0.5989 0.3906

31 0.4002 0.7225 0.2781 0.2607 0.4581 0.5718 0.4816 0.5616 0.3248

32 0.2214 0.1741 −0.0037 0.1619 0.1117 0.1719 0.1608 0.1450 −0.0221

33 0.4302 0.6883 0.1884 0.1917 0.4707 0.5630 0.4997 0.3468 0.2593

34 −0.1342 −0.0436 −0.6295 −0.9718 0.9538 −0.9051 −0.1342 0.0313 0.2446

Index 10 11 12 13 14 15 16 17 18 19

ρ(Cn, Ks) ρ(Cn, Ln) ρ(Cn, D(1)) ρ(Cn, D(2)) ρ(D, x1) ρ(D, Ks) ρ(D, Ln) ρ(D, D(1)) ρ(D, D(2)) ρ(x1, Ks)

1 0.8174 0.5944 0.7903 0.7712 0.9592 0.8730 0.7259 0.9657 0.9643 0.9254

2 0.1742 0.2704 0.2826 0.2839 0.7501 0.3881 0.9181 0.9619 0.9314 0.2456

3 0.3807 0.2524 0.5598 0.5870 0.4650 0.5127 0.8914 0.9020 0.9079 0.1326

4 0.6861 0.5776 0.8680 0.7951 0.7810 0.5434 0.7886 0.8830 0.9311 0.5572

5 0.7498 0.6094 0.7475 0.7422 0.7196 0.8303 0.9050 0.9574 0.9417 0.5388

6 0.0680 0.2221 0.2381 0.1801 0.6237 0.7300 0.8963 0.9393 0.8801 0.7983

7 0.5073 0.2052 0.6184 0.6248 0.4660 0.5933 0.8117 0.8217 0.8573 0.3912

8 0.4015 0.0017 0.7515 0.3210 0.6523 0.3463 0.3888 0.3594 0.9132 0.1840

9 0.2377 −0.3534 0.8326 0.3544 0.5811 0.3316 0.4651 0.3050 0.9493 0.2032

10 0.2234 −0.2234 0.8594 0.2967 0.6366 0.2492 0.3751 0.2256 0.9481 0.0868

11 0.5492 0.7227 0.9606 0.9463 0.9392 0.5331 0.9390 0.8718 0.9714 0.6221

12 0.5622 0.6340 0.8375 0.7931 0.8467 0.7969 0.8474 0.9455 0.9380 0.8100

13 0.7311 0.3466 0.9330 0.9363 0.9046 0.8289 0.7598 0.9486 0.9391 0.8425

14 0.5670 0.3265 0.7388 0.7574 0.6757 0.4296 0.8184 0.9260 0.9225 0.3108

15 0.5257 0.2675 0.6964 0.7100 0.6147 0.3995 0.7980 0.9078 0.9200 0.2464

16 0.4949 0.1937 0.6534 0.6411 0.4120 0.3738 0.7690 0.8670 0.9055 0.1143

17 −0.0402 −0.0122 0.1651 0.1653 0.2143 0.4102 0.6878 0.7733 0.8456 0.0447

18 0.1582 0.1027 0.4752 0.4902 0.5040 0.1904 0.5901 0.8725 0.8851 0.0638

19 0.2490 0.2137 0.5599 0.5316 0.5183 0.2287 0.5911 0.7611 0.8338 0.0327

20 0.1649 0.0836 0.1829 0.2016 0.1031 0.7905 0.9247 0.9522 0.9241 0.1132

21 0.4880 0.0325 0.3314 0.3382 0.2678 0.4149 0.7508 0.8884 0.8524 0.0835

22 0.8194 0.7371 0.9451 0.9123 0.9575 0.6433 0.8327 0.9390 0.9707 0.7010

23 0.7195 0.3891 0.8312 0.5353 0.8704 0.4649 0.4862 0.6580 0.9504 0.7992

24 0.6355 0.0669 0.8167 0.4111 0.8733 0.4146 0.3627 0.5403 0.9779 0.6980

25 0.6814 0.2080 0.8410 0.5506 0.8911 0.5155 0.5048 0.6631 0.9694 0.7628

26 0.4291 −0.0707 0.7971 0.2788 0.8253 0.3935 0.2696 0.3771 0.9754 0.5413

27 0.5427 0.2819 0.5861 0.5264 0.7188 0.8070 0.5920 0.9352 0.8728 0.5695

28 0.8188 0.5093 0.7923 0.7456 0.8345 0.6962 0.7237 0.9204 0.9236 0.6212

29 0.4884 0.2103 0.6517 0.6022 0.1789 0.7311 0.7080 0.9080 0.8292 0.5171

30 0.6341 0.2404 0.6153 0.5392 0.6346 0.7339 0.6197 0.9035 0.8259 0.5001

31 0.5157 0.2077 0.6067 0.5300 0.5304 0.7166 0.6631 0.8941 0.8021 0.4229

32 0.1465 −0.0170 0.2033 0.2220 0.0364 0.5291 0.7674 0.9271 0.8880 0.0101

33 0.0926 0.0970 0.4562 0.4120 0.4748 0.6803 0.7723 0.8795 0.8415 0.4195

34 0.3609 −0.3531 0.3378 0.0649 0.7297 0.0866 0.0487 0.1570 0.9858 0.6768
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Table B.1. Continued.

Index 20 21 22 23 24 25 26 27 28

ρ(x1, Ln) ρ(x1, D(1)) ρ(x1, D(2)) ρ(Ks, Ln) ρ(Ks, D(1)) ρ(Ks, D(2)) ρ(Ln, D(1)) ρ(Ln, D(2)) ρ(D(1), D(2))

1 0.6327 0.9978 0.9998 0.7122 0.9389 0.9245 0.6604 0.6405 0.9984

2 0.4881 0.8660 0.9134 0.4481 0.3467 0.3274 0.7771 0.7189 0.9929

3 0.1934 0.6460 0.7101 0.5798 0.4773 0.4407 0.6485 0.6530 0.9811

4 0.6130 0.9783 0.9885 0.7710 0.6277 0.5737 0.6605 0.6789 0.9813

5 0.4991 0.8285 0.8842 0.8506 0.8171 0.7668 0.7887 0.7535 0.9913

6 0.3684 0.8132 0.8867 0.6089 0.8563 0.8700 0.7478 0.6517 0.9864

7 0.2262 0.6736 0.7412 0.4906 0.6480 0.5920 0.5024 0.4922 0.9475

8 0 0.8135 0.8463 0.5030 0.3187 0.2061 −0.0050 0.1176 0.4936

9 −0.1161 0.7007 0.7440 0.3782 0.2365 0.2762 −0.3636 0.2134 0.4889

10 −0.1437 0.7414 0.8018 0.5184 0.1290 0.1398 −0.3598 0.1438 0.3751

11 0.8128 0.9837 0.9930 0.5722 0.6484 0.5928 0.7290 0.8623 0.9568

12 0.6520 0.9427 0.9691 0.7984 0.8524 0.8447 0.7713 0.7455 0.9924

13 0.4673 0.9841 0.9927 0.6005 0.8604 0.8512 0.5510 0.5248 0.9969

14 0.3310 0.8087 0.8589 0.2983 0.4885 0.4576 0.6007 0.5809 0.9839

15 0.2497 0.7503 0.8010 0.2684 0.4523 0.4137 0.5520 0.5475 0.9788

16 0.0562 0.5789 0.6656 0.2530 0.4262 0.3673 0.4862 0.4847 0.9533

17 0.0545 0.3371 0.3805 0.7626 0.1513 0.1393 0.2283 0.2760 0.9458

18 0.0501 0.6365 0.6794 0.3420 0.1429 0.1199 0.2204 0.2123 0.9812

19 0.0748 0.7433 0.7697 0.3351 0.1335 0.1077 0.0448 0.1010 0.9619

20 0.0564 0.1303 0.1454 0.6233 0.8541 0.8624 0.7665 0.7184 0.9907

21 0.0347 0.4062 0.4780 0.2918 0.4205 0.3829 0.4013 0.3398 0.9842

22 0.7490 0.9949 0.9983 0.8031 0.7300 0.6910 0.7541 0.7622 0.9888

23 0.6646 0.9320 0.9790 0.7406 0.8912 0.6890 0.6611 0.6156 0.8432

24 0.3912 0.8774 0.9476 0.5641 0.7939 0.5488 0.3408 0.3734 0.6794

25 0.5507 0.9242 0.9721 0.6990 0.8180 0.6646 0.4857 0.5386 0.8112

26 0.1486 0.8169 0.8977 0.4876 0.5646 0.4417 0.0699 0.1943 0.4845

27 0.2248 0.8789 0.9367 0.4761 0.7840 0.7124 0.3996 0.3245 0.9845

28 0.4680 0.9417 0.9682 0.7181 0.7457 0.6886 0.5866 0.5501 0.9877

29 0.0427 0.2885 0.3822 0.5164 0.7657 0.7361 0.4493 0.3477 0.9771

30 0.1765 0.8431 0.9205 0.5016 0.7344 0.6617 0.3726 0.2850 0.9795

31 0.1358 0.7641 0.8725 0.4877 0.7372 0.6597 0.3945 0.2903 0.9731

32 0.0063 0.0524 0.0629 0.3943 0.5167 0.4740 0.4892 0.4156 0.9878

33 0.1267 0.7062 0.8105 0.5701 0.7390 0.6966 0.5089 0.4324 0.9766

34 −0.5920 0.7797 0.8022 −0.9766 0.9347 0.1797 −0.9156 −0.0611 0.2549
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ER N = 400

Fig. B.1. Pearson correlation coefficient between any two
centrality metrics as a function of the link density p, in ER
networks (N = 400). The number in the annotation is the
correlation index.

Proof. The generating function for the probability distri-
bution of node degree is defined as:

ϕD(z) =
N−1∑

k=0

zkProb[D = k],

1.0

0.8

0.6

0.4

0.2

0.0

ρ(
i, 

j)

500045004000350030002500200015001000500
N

SF α = 2.5
1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27  28

Fig. B.2. Pearson correlation coefficient between any two cen-
trality metrics as a function of the size N of networks, in scale-
free networks (α = 2.5). The number in the annotation is the
correlation index.

and the generating function of the degree of the node that
we arrive at by following a randomly chosen link is:

∑
k kProb[D = k]zk

∑
k kProb[D = k]

= z
ϕ′

D(z)
E[D]

, (C.5)
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where E[.] is the expectation. If we start at a randomly
chosen node, the generating function of the degree of a
nearest neighbor of this node follows equation (C.5). The
1st-order degree mass D(1) of a node equals the degree sum
of the node and its neighbors. The generating function
has the “powers” property [45], that the distribution of
the 1st-order degree mass of a node obtained from one
nearest neighbor is generated by:

ϕD(z)∗ = z2 ϕ′
D(z)

E[D]
,

then, the distribution of the total of the 1st-order degree
mass over k independent realizations (k nearest neighbors)
of the node is generated by kth power of ϕD(z)∗ as:

ϕD(1)(z) = ϕD(ϕD(z)∗)

=
∑

k

Prob[D = k]
(

z2 ϕ′
D(z)

E[D]

)k

. (C.6)

For ER networks, E[D] = (N − 1)p is the average degree
in an ER network Gp(N), and ϕD(z) = (1 − p + pz)N−1,
thus,

ϕD(1)(z) =
(
(1 − p) + z2p (1 − p + pz)N−2

)N−1

, (C.7)

In addition, the generating function has the “Moments”
property [45], that E[(D(1))n] = [(z d

dz )nϕD(1)(z)]z=1.
Together with Var[D(1)] = E[(D(1))2]−E[D(1)]2, we arrive
at the (C.1) and (C.2), when N → ∞.

Similarly, the distribution of the 2nd-order degree mass
is generated by ϕD(ϕD(1)(ϕD(1) (z))). Hence, we obtain
the generating function of the 2nd-order degree mass as:

ϕD(2)(z) =
(
1 − p + pz2 (1 − p + pz)N−2

×
(
1 − p + pz2 (1 − p + pz)N−2

)N−2
)N−1

,

Thus, we can obtain (C.3) and (C.4).

C.1 Proof of Lemma 1

Proof. The eigenvalue equation Ax = λx leads to λk
1x1 =

Akx1, from which we obtain

uT x1

m∑

j=1

λj
1 = uT

⎛

⎝
m∑

j=1

Aj

⎞

⎠ x1,

where uT x1 = NE[X1] and uT
∑m+1

j=1 Aj =
(
d(m)

)T
.

Hence, the relation between the principal eigenvector and
the mth-order degree mass vector can be expressed as:
E[X1]N

∑m+1
j=1 λj

1 =
(
d(m)

)T
x1, leading to:

E[D(m)X1] = E[X1]
m+1∑

j=1

λj
1. (C.8)

The Pearson correlation coefficient follows as:

ρ(D(m), X1) =
E[D(m)X1] − E[D(m)]E[X1]√

Var[D(m)]
√

Var[X1]

=

(
m+1∑
j=1

λj
1 − E[D(m)]

)
E[X1]

√
Var[D(m)]

√
Var[X1]

. (C.9)

The ratio of the two Pearson correlation coefficients is:

ρ(D(1), X1)
ρ(D, X1)

=

√
Var[D]√

Var[D(1)]

(
1 +

(λ2
1 − E[D2])

(λ1 − E[D])

)
.

(C.10)

For large ER graphs, E[D] = (N − 1)p → Np, E[D2] =
(N − 1)2p2 − (N − 1)p2 + (N − 1)p → N2p2 − Np2 + Np
and Var[D] = (N − 1)p(1 − p) → Np(1 − p). From (C.2),
we obtain
√

Var[D]√
Var[D(1)]

=

√
(1 − p)

(E[D] + 2)2 − 2
>

1
E[D] + 2

. (C.11)

When N → ∞ and Np = ς (ς is a constant and indepen-
dent of N), the spectral radius λ1 → ς, in sparse random
graphs [46,47]. With (C.10) and (C.11), ρ(D(1), X1) ≥
ρ(D, X1) is proved.

The ratio of the two Pearson correlation coefficients is:

ρ(D(2), X1)
ρ(D(1), X1)

=

(
λ1 + λ2

1 + λ3
1 − E[D(2)]

)√
Var[D(1)]

(λ1 + λ2
1 − E[D2] − E[D])

√
Var[D(2)]

,

with (C.3) and λ1 → Np, when N → ∞ we arrive at
(
λ1 + λ2

1 + λ3
1 − E[D(2)]

)

(λ1 + λ2
1 − E[D2] − E[D])

= 2E[D] + 1.

With (C.2) and (C.4), for large sparse random networks,
ρ(D(2), X1) ≥ ρ(D(1), X1) is proved.
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