37 research outputs found

    Congenital muscular dystrophy in a dog with a LAMA2 gene deletion.

    Get PDF
    A 2-year-old female spayed dog was presented with a chronic history of short-strided gait and inability to completely open the jaw. Clinical signs were present since the dog was adopted from a humane society at a few months of age. Serum creatine kinase activity was abnormally high. Neurological examination, electromyography, muscle biopsies with immunofluorescent staining, and whole genome sequencing (WGS) were performed. A dystrophic phenotype was identified histologically in muscle biopsies, deficiency of laminin α2 protein was confirmed by immunofluorescent staining, and a deletion in the LAMA2 gene was identified by analysis of the WGS data. Congenital muscular dystrophy associated with a disease variant in LAMA2 was identified

    Pathogenic variants in COL6A3 cause Ullrich-like congenital muscular dystrophy in young Labrador Retriever dogs

    Get PDF
    The collagen VI-related muscular dystrophies in people include a broad spectrum of diseases ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Clinical features are attributable to both muscle and connective tissue and include progressive muscle weakness and respiratory failure, hyperlaxity of distal joints, and progressive contracture of large joints. Here we describe two different COL6A3 pathogenic variants in Labrador Retriever dogs that result in autosomal recessive or autosomal dominant congenital myopathies with hyperlaxity of distal joints and joint contracture, similar to the condition in people

    Genome-Wide Analyses for Osteosarcoma in Leonberger Dogs Reveal the CDKN2A/B Gene Locus as a Major Risk Locus

    Get PDF
    Dogs represent a unique spontaneous cancer model. Osteosarcoma (OSA) is the most common primary bone tumor in dogs (OMIA 001441-9615), and strongly resembles human forms of OSA. Several large- to giant-sized dog breeds, including the Leonberger, have a greatly increased risk of developing OSA. We performed genome-wide association analysis with high-density imputed SNP genotype data from 273 Leonberger cases with a median age of 8.1 [3.1–13.5] years and 365 controls older than eight years. This analysis revealed significant associations at the CDKN2A/B gene locus on canine chromosome 11, mirroring previous findings in other dog breeds, such as the greyhound, that also show an elevated risk for OSA. Heritability (h2SNP) was determined to be 20.6% (SE = 0.08; p-value = 5.7 × 10−4) based on a breed prevalence of 20%. The 2563 SNPs across the genome accounted for nearly all the h2SNP of OSA, with 2183 SNPs of small effect, 316 SNPs of moderate effect, and 64 SNPs of large effect. As with many other cancers it is likely that regulatory, non-coding variants underlie the increased risk for cancer development. Our findings confirm a complex genetic basis of OSA, moderate heritability, and the crucial role of the CDKN2A/B locus leading to strong cancer predisposition in dogs. It will ultimately be interesting to study and compare the known genetic loci associated with canine OSA in human OSA

    Special Issue “Molecular Basis of Inherited Diseases in Companion Animals”

    No full text
    The study of inherited diseases in companion animals has exploded over the past 15 years since the publication of the first dog genome in 2005 [...

    Special Issue “Molecular Basis of Inherited Diseases in Companion Animals”

    No full text
    The study of inherited diseases in companion animals has exploded over the past 15 years since the publication of the first dog genome in 2005 [...]

    An SNN retrocopy insertion upstream of GPR22 is associated with dark red coat color in Poodles

    No full text
    Pigment production and distribution is controlled through multiple genes, resulting in a wide range of coat color phenotypes in dogs. Dogs that produce only the pheomelanin pigment vary in intensity from white to deep red. The Poodle breed has a wide range of officially recognized coat colors, including the pheomelanin-based white, cream, apricot, and red coat colors, which are not fully explained by the previously identified genetic variants involved in pigment intensity. Here, a genome-wide association study for pheomelanin intensity was performed in Poodles which identified an association on canine chromosome 18. Whole-genome sequencing data revealed an SNN retrocopy insertion (SNNL1) in apricot and red Poodles within the associated region on chromosome 18. While equal numbers of melanocytes were observed in all Poodle skin hair bulbs, higher melanin content was observed in the darker Poodles. Several genes involved in melanogenesis were also identified as highly overexpressed in red Poodle skin. The most differentially expressed gene however was GPR22, which was highly expressed in red Poodle skin while unexpressed in white Poodle skin (log2 fold change in expression 6.1, P < 0.001). GPR22 is an orphan G-protein-coupled receptor normally expressed exclusively in the brain and heart. The SNNL1 retrocopy inserted 2.8 kb upstream of GPR22 and is likely disrupting regulation of the gene, resulting in atypical expression in the skin. Thus, we identify the SNNL1 insertion as a candidate variant for the CFA18 pheomelanin intensity locus in red Poodles

    RNA sequencing of whole blood in dogs with primary immune-mediated hemolytic anemia (IMHA) reveals novel insights into disease pathogenesis.

    No full text
    Immune-mediated hemolytic anemia (IMHA) is a life-threatening autoimmune disorder characterized by a self-mediated attack on circulating red blood cells. The disease occurs naturally in both dogs and humans, but is significantly more prevalent in dogs. Because of its shared features across species, dogs offer a naturally occurring model for studying IMHA in people. In this study, we used RNA sequencing of whole blood from treatment-naĂŻve dogs to study transcriptome-wide changes in gene expression in newly diagnosed animals compared to healthy controls. We found many overexpressed genes in pathways related to neutrophil function, coagulation, and hematopoiesis. In particular, the most highly overexpressed gene in cases was a phospholipase scramblase, which mediates the externalization of phosphatidylserine from the inner to the outer leaflet of cell membranes. This family of genes has been shown to be critically important for programmed cell death of erythrocytes as well as the initiation of the clotting cascade. Unexpectedly, we found marked underexpression of many genes related to lymphocyte function. We also identified groups of genes that are highly associated with the inflammatory response and red blood cell regeneration in affected dogs. We did not find any genes that distinguished dogs that lived vs. those that died at 30 days following diagnosis, nor did we find any relevant genomic signatures of microbial organisms in the blood of affected animals. Future studies are warranted to validate these findings and assess their implication in developing novel therapeutic approaches for dogs and humans with IMHA

    A QIL1 Variant Associated with Ventricular Arrhythmias and Sudden Cardiac Death in the Juvenile Rhodesian Ridgeback Dog

    No full text
    The QIl1 gene produces a component of the Mitochondrial Contact Site and Cristae Organizing System that forms and stabilizes mitochondrial cristae junctions and is important in cellular energy production. We previously reported a family of Rhodesian Ridgebacks with cardiac arrhythmias and sudden cardiac death. Here, we performed whole genome sequencing on a trio from the family. Variant calling was performed using a standardized bioinformatics approach. Variants were filtered against variants from 247 dogs of 43 different breeds. High impact variants were validated against additional affected and unaffected dogs. A single missense G/A variant in the QIL1 gene was associated with the cardiac arrhythmia (p < 0.0001). The variant was predicted to change the amino acid from conserved Glycine to Serine and to be deleterious. Ultrastructural analysis of the biceps femoris muscle from an affected dog revealed hyperplastic mitochondria, cristae rearrangement, electron dense inclusions and lipid bodies. We identified a variant in the Q1l1 gene resulting in a mitochondrial cardiomyopathy characterized by cristae abnormalities and cardiac arrhythmias in a canine model. This natural animal model of mitochondrial cardiomyopathy provides a large animal model with which to study the development and progression of disease as well as genotypic phenotypic relationships
    corecore