1,569 research outputs found
Relative biological effectiveness of fast neutrons compared with X-rays: Prenatal mortality in the mouse
The effects of fission neutrons and of X-rays on the mouse zygote are discussed. Seven-week-old virgin mice were allowed a 12-hour mating opportunity beginning at 7:00 P.M. Between 1:30 and 4:00 P.M., except where indicated otherwise, the females which had mated (vaginal plug) during the night were either irradiated or sham-irradiated. At the time of irradiation the zygotes were in a pronuclear stage. Sixteen days later the mice were killed and the uteri dissected. The number of dead embryos, live embryos, and gross anomalies were determined. Dead embryos were classified as to stage of development
In-medium Yang-Mills equations: a derivation and canonical quantization
The equations for Yang-Mills field in a medium are derived in a linear
approximation with respect to the gauge coupling parameter and the external
field. The obtained equations closely resemble the macroscopic Maxwell
equations. A canonical quantization is performed for a family of Fermi-like
gauges in the case of constant and diagonal (in the group indices) tensors of
electric permittivity and magnetic permeability. The physical subspace is
defined and the gauge field propagator is evaluated for a particular choice of
the gauge. The propagator is applied for evaluation of the cross-section of
ellastic quark scattering in the Born approximation. Possible applications to
Cherenkov-type gluon radiation are commented briefly.Comment: 27 pages, references added, version extended with emphasis on
non-Abelian gauge group impact on medium characteristics. To appear in J.
Phys.
Modification of radiation pressure due to cooperative scattering of light
Cooperative spontaneous emission of a single photon from a cloud of N atoms
modifies substantially the radiation pressure exerted by a far-detuned laser
beam exciting the atoms. On one hand, the force induced by photon absorption
depends on the collective decay rate of the excited atomic state. On the other
hand, directional spontaneous emission counteracts the recoil induced by the
absorption. We derive an analytical expression for the radiation pressure in
steady-state. For a smooth extended atomic distribution we show that the
radiation pressure depends on the atom number via cooperative scattering and
that, for certain atom numbers, it can be suppressed or enhanced.Comment: 8 pages, 2 Figure
Microwave emission from a crystal of molecular magnets -- The role of a resonant cavity
We discuss the effects caused by a resonant cavity around a sample of a
magnetic molecular crystal (such as Mn-Ac), when a time dependent
external magnetic field is applied parallel to the easy axis of the crystal. We
show that the back action of the cavity field on the sample significantly
increases the possibility of microwave emission. This radiation process can be
supperradiance or a maser-like effect, depending on the strength of the
dephasing. Our model provides further insight to the theoretical understanding
of the bursts of electromagnetic radiation observed in recent experiments
accompanying the resonant quantum tunneling of magnetization. The experimental
findings up to now can all be explained as being a maser effect rather than
superradiance. The results of our theory scale similarly to the experimental
findings, i.e., with increasing sweep rate of the external magnetic field, the
emission peaks are shifted towards higher field values.Comment: 12 pages, 6 figures. To appear in Phys. Rev.
Mean field and corrections for the Euclidean Minimum Matching problem
Consider the length of the minimum matching of N points in
d-dimensional Euclidean space. Using numerical simulations and the finite size
scaling law , we obtain
precise estimates of for . We then consider
the approximation where distance correlations are neglected. This model is
solvable and gives at an excellent ``random link'' approximation to
. Incorporation of three-link correlations further improves
the accuracy, leading to a relative error of 0.4% at d=2 and 3. Finally, the
large d behavior of this expansion in link correlations is discussed.Comment: source and one figure. Submitted to PR
Non-perturbative Landau gauge and infrared critical exponents in QCD
We discuss Faddeev-Popov quantization at the non-perturbative level and show
that Gribov's prescription of cutting off the functional integral at the Gribov
horizon does not change the Schwinger-Dyson equations, but rather resolves an
ambiguity in the solution of these equations. We note that Gribov's
prescription is not exact, and we therefore turn to the method of stochastic
quantization in its time-independent formulation, and recall the proof that it
is correct at the non-perturbative level. The non-perturbative Landau gauge is
derived as a limiting case, and it is found that it yields the Faddeev-Popov
method in Landau gauge with a cut-off at the Gribov horizon, plus a novel term
that corrects for over-counting of Gribov copies inside the Gribov horizon.
Non-perturbative but truncated coupled Schwinger-Dyson equations for the gluon
and ghost propagators and in Landau gauge are solved
asymptotically in the infrared region. The infrared critical exponents or
anomalous dimensions, defined by and are obtained in space-time dimensions . Two
possible solutions are obtained with the values, in dimensions, , or .Comment: 26 pages. Modified 2.25.02 to update references and to clarify
Introduction and Conclusio
Pion Breather States in QCD
We describe a class of pionic breather solutions (PBS) which appear in the
chiral lagrangian description of low-energy QCD. These configurations are
long-lived, with lifetimes greater than fm/c, and could arise as
remnants of disoriented chiral condensate (DCC) formation at RHIC. We show that
the chiral lagrangian equations of motion for a uniformly isospin-polarized
domain reduce to those of the sine-gordon model. Consequently, our solutions
are directly related to the breather solutions of sine-gordon theory in 3+1
dimensions. We investigate the possibility of PBS formation from multiple
domains of DCC, and show that the probability of formation is non-negligible.Comment: 9 pages, 4 figure
Use of behavioral economics and social psychology to improve treatment of acute respiratory infections (BEARI): rationale and design of a cluster randomized controlled trial [1RC4AG039115-01] - study protocol and baseline practice and provider characteristics
Background: Inappropriate antibiotic prescribing for nonbacterial infections leads to increases in the costs of care, antibiotic resistance among bacteria, and adverse drug events. Acute respiratory infections (ARIs) are the most common reason for inappropriate antibiotic use. Most prior efforts to decrease inappropriate antibiotic prescribing for ARIs (e.g., educational or informational interventions) have relied on the implicit assumption that clinicians inappropriately prescribe antibiotics because they are unaware of guideline recommendations for ARIs. If lack of guideline awareness is not the reason for inappropriate prescribing, educational interventions may have limited impact on prescribing rates. Instead, interventions that apply social psychological and behavioral economic principles may be more effective in deterring inappropriate antibiotic prescribing for ARIs by well-informed clinicians. Methods/design The Application of Behavioral Economics to Improve the Treatment of Acute Respiratory Infections (BEARI) Trial is a multisite, cluster-randomized controlled trial with practice as the unit of randomization. The primary aim is to test the ability of three interventions based on behavioral economic principles to reduce the rate of inappropriate antibiotic prescribing for ARIs. We randomized practices in a 2 × 2 × 2 factorial design to receive up to three interventions for non-antibiotic-appropriate diagnoses: 1) Accountable Justifications: When prescribing an antibiotic for an ARI, clinicians are prompted to record an explicit justification that appears in the patient electronic health record; 2) Suggested Alternatives: Through computerized clinical decision support, clinicians prescribing an antibiotic for an ARI receive a list of non-antibiotic treatment choices (including prescription options) prior to completing the antibiotic prescription; and 3) Peer Comparison: Each provider’s rate of inappropriate antibiotic prescribing relative to top-performing peers is reported back to the provider periodically by email. We enrolled 269 clinicians (practicing attending physicians or advanced practice nurses) in 49 participating clinic sites and collected baseline data. The primary outcome is the antibiotic prescribing rate for office visits with non-antibiotic-appropriate ARI diagnoses. Secondary outcomes will examine antibiotic prescribing more broadly. The 18-month intervention period will be followed by a one year follow-up period to measure persistence of effects after interventions cease. Discussion The ongoing BEARI Trial will evaluate the effectiveness of behavioral economic strategies in reducing inappropriate prescribing of antibiotics. Trials registration ClinicalTrials.gov: NCT0145494
Electronic interactions in fullerene spheres
The electron-phonon and Coulomb interactions inC, and larger fullerene
spheres are analyzed. The coupling between electrons and intramolecular
vibrations give corrections meV to the electronic energies for
C, and scales as in larger molecules. The energies associated
with electrostatic interactions are of order eV, in C and
scale as . Charged fullerenes show enhanced electron-phonon coupling,
meV, which scales as . Finally, it is argued that non only
C, but also C are highly polarizable molecules. The
polarizabilities scale as and , respectively. The role of this large
polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure
Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates
We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas
coupled to a diatomic molecular Bose gas by coherent Raman transitions. This
system is shown to result in a new type of `superchemistry', in which giant
collective oscillations between the atomic and molecular gas can occur. The
phenomenon is caused by stimulated emission of bosonic atoms or molecules into
their condensate phases
- …
