13 research outputs found

    Genomic epidemiology of the clinically dominant clonal complex 1 in the Listeria monocytogenes population in the UK

    Get PDF
    Listeria monocytogenes is a food-borne pathogen, typically affecting the elderly, immunocompromised patients and pregnant women. The aim of this study was to determine the population structure of L. monocytogenes clonal complex 1 (CC1) in the UK and describe the genomic epidemiology of this clinically significant CC. We interrogated a working dataset of 4073 sequences of L. monocytogenes isolated between January 2015 and December 2020 from human clinical specimens, food and/or food-production environments. A minimum spanning tree was reconstructed to determine the population structure of L. monocytogenes in the UK. Subsequent analysis focused on L. monocytogenes CC1, as the cause of the highest proportion of invasive listeriosis in humans. Sequencing data was integrated with metadata on food and environmental isolates, and information from patient questionnaires, including age, sex and clinical outcomes. All isolates either belonged to lineage I (n=1299/4073, 32%) or lineage II (n=2774/4073, 68%), with clinical isolates from human cases more likely to belong to lineage I (n=546/928, 59%) and food isolates more likely to belong to lineage II (n=2352/3067, 77%). Of the four largest CCs, CC1 (n=237) had the highest proportion of isolates from human cases of disease (CC1 n=160/237, 67.5 %; CC121 n=13/843, 2 %; CC9 n=53/360, 15 %; CC2 n=69/339, 20%). Within CC1, most cases were female (n=95/160, 59%, P=0.01771) and the highest proportion of cases were in people >60 years old (39/95, 41%, P=1.314×10−6) with a high number of them aged 20–39 years old (n=35/95, 37%) most linked to pregnancy-related listeriosis (n=29/35, 83%). Most of the male cases were in men aged over 60 years old (40/65, 62%), and most of the fatal cases in both males and females were identified in this age group (42/55, 76%). Phylogenetic analysis revealed 23 5 SNP single linkage clusters comprising 80/237 (34 %) isolates with cluster sizes ranging from 2 to 19. Five 5 SNP clusters comprised isolates from human cases and an implicated food item. Expanding the analysis to 25 SNP single linkage clusters resolved an additional two clusters linking human cases to a potential food vehicle. Analysis of demographic and clinical outcome data identified CC1 as a clinically significant cause of invasive listeriosis in the elderly population and in women of child-bearing age. Phylogenetic analysis revealed the population structure of CC1 in the UK comprised small, sparsely populated genomic clusters. Only clusters containing isolates from an implicated food vehicle, or food processing or farming environments, were resolved, emphasizing the need for clinical, food and animal-health agencies to share sequencing data in real time, and the importance of a One Health approach to public-health surveillance of listeriosis

    Outbreak of Shiga toxin-producing Escherichia coli O157 linked with consumption of a fast-food product containing imported cucumbers, United Kingdom, August 2020.

    Get PDF
    In August 2020, an outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 occurred in the United Kingdom. Whole genome sequencing revealed these cases formed a genetically distinct cluster. Hypotheses generated from case interviews were tested in analytical studies, and results informed environmental sampling and food chain analysis. A case-case study used non-outbreak 'comparison' STEC cases; a case-control study used a market research panel to recruit controls. A total of 36 cases were identified; all cases reported symptom onset between 3 and 16 August 2020. The majority of cases (83%) resided in the Midlands region of England or Wales. A high proportion of cases reported eating out, with one fast-food restaurant chain mentioned by 64% (n = 23) of cases. Both case-case (adjusted odds ratio (aOR) 31.8, 95% confidence interval (CI) 1.6 - 624.9) and case-control (aOR 9.19, 95% CI 1.0 - 82.8) studies provided statistically significant results that consumption of a specific fast-food product was independently associated with infection. Consumption of a specific fast-food product was a likely cause of this outbreak. The only ingredient specific to the product was cucumbers. Supply of cucumbers was immediately halted, and no further cases have been identified

    Recurrent seasonal outbreak of an emerging serotype of Shiga toxin-producing Escherichia coli (STEC O55:H7 Stx2a) in the south west of England, July 2014 to September 2015.

    Get PDF
    The first documented British outbreak of Shiga toxin-producing Escherichia coli (STEC) O55:H7 began in the county of Dorset, England, in July 2014. Since then, there have been a total of 31 cases of which 13 presented with haemolytic uraemic syndrome (HUS). The outbreak strain had Shiga toxin (Stx) subtype 2a associated with an elevated risk of HUS. This strain had not previously been isolated from humans or animals in England. The only epidemiological link was living in or having close links to two areas in Dorset. Extensive investigations included testing of animals and household pets. Control measures included extended screening, iterative interviewing and exclusion of cases and high risk contacts. Whole genome sequencing (WGS) confirmed that all the cases were infected with similar strains. A specific source could not be identified. The combination of epidemiological investigation and WGS indicated, however, that this outbreak was possibly caused by recurrent introductions from a local endemic zoonotic source, that a highly similar endemic reservoir appears to exist in the Republic of Ireland but has not been identified elsewhere, and that a subset of cases was associated with human-to-human transmission in a nursery

    RpoS-dependent stress tolerance in Pseudomonas aeruginosa

    No full text
    International audiencePseudomonas aeruginosa is able to persist during feast and famine in many different environments including soil, water, plants, animals and humans. The alternative sigma factor encoded by the rpoS gene is known to be important for survival under stressful conditions in several other bacterial species. To determine if the P. aeruginosa RpoS protein plays a similar role in stationary-phase-mediated resistance, an rpoS mutant was constructed and survival during exposure to hydrogen peroxide, high temperature, hyperosmolarity, low pH and ethanol was investigated. Disruption of the rpoS gene resulted in a two-to threefold increase in the rate of kill of stationary-phase cells. The rpoS mutant also survived less well than the parental strain during the initial phase of carbon or phosphate-carbon starvation. However, after 25 d starvation the remaining population of culturable cells was not significantly different. Stationary-phase cells of the RpoS-negative strain were much more stress resistant than exponentially growing RpoS-positive cells, suggesting that factors other than the RpoS protein must be associated with stationary-phase stress tolerance in P. aeruginosa. Comparison of two-dimensional PAGE of the rpoS mutant and the parental strain showed four major modifications of protein patterns associated with the rpoS mutation

    Yersinia enterocolitica biovar 1A: An underappreciated potential pathogen in the food chain

    No full text
    Yersinia enterocolitica is an underreported cause of foodborne gastroenteritis. Little is known of the diversity of Y. enterocolitica isolated from food and which food commodities contribute to human disease. In this study, Y. enterocolitica was isolated from 37/50 raw chicken, 8/10 pork, 8/10 salmon and 1/10 leafy green samples collected at retail in the UK. Up to 10 presumptive Y. enterocolitica isolates per positive sample underwent whole genome sequencing (WGS) and were compared with publicly available genomes. In total, 207 Y. enterocolitica isolates were analyzed and belonged to 38 sequence types (STs). Up to five STs of Y. enterocolitica were isolated from individual food samples and isolates belonging to the same sample and ST differed by 0–74 single nucleotide polymorphisms (SNPs). Biotype was predicted for 205 (99 %) genomes that all belonged to biotype 1A, previously described as non-pathogenic. However, around half (51 %) of food samples contained isolates belonging to the same ST as previously isolated from UK human cases. The closest human-derived isolates shared between 17 and 7978 single nucleotide polymorphisms (SNPs) with the food isolates. Extensive food surveillance is required to determine what food sources are responsible for Y. enterocolitica infections and to re-examine the role of biotype 1A as a human pathogen

    Two Outbreaks of Foodborne Gastrointestinal Infection Linked to Consumption of Imported Melons, United Kingdom, March to August 2021

    No full text
    The aim of this study was to describe two foodborne outbreaks caused by contaminated imported melon and make recommendations for future practice. Between March and July 2021, there was an outbreak of 113 cases of Salmonella Braenderup in the UK (62% female, median age 61 years, 33% hospitalized). Analytical epidemiological studies identified Galia melons as the vehicle of infection (OR 671.9, 95% CI 39.0–58,074.0, p < 0.001). Subsequently, the outbreak strain was isolated from two samples of Galia melon imported from Latin America. In July and August 2021, there was an outbreak of 17 cases of Shiga toxin-producing Escherichia coli (STEC) O157:H7 in the UK (53% female, median age 21 years, 35% were hospitalized). Review of the STEC surveillance questionnaire data, followed by the analysis of responses from a modified hypothesis-generating questionnaire, implicated eating precut watermelon from retailer B sourced from Europe as the vehicle of infection. Outbreaks of gastrointestinal pathogens caused by contaminated food of nonanimal origin are a global public health concern. Given the difficulty in removing pathogens from the flesh of ready-to-eat fruit and vegetables, public health interventions should target all steps of the food chain prior to consumption, from cultivation on the farm to processing/packing and distribution

    Foodborne Outbreak of Extended Spectrum Beta-lactamase Producing Shigella sonnei Associated with Contaminated Spring Onions in the United Kingdom

    No full text
    Globalization of the food supply chain has created conditions favorable for emergence and spread of multidrug-resistant (MDR) foodborne pathogens. In November 2021, the UK Health Security Agency detected an outbreak of 17 cases infected with the same strain of MDR extended spectrum beta-lactamase (ESBL)-producing Shigella sonnei. Phylogenetic analysis of whole-genome sequencing data revealed the outbreak was closely related to strains of S. sonnei isolated from travelers returning to the UK from Egypt. None of the outbreak cases reported travel and all 17 cases reported eating food from a restaurant/food outlet in the week prior to symptom onset, of which 11/17 (64.7%) ate at branches of the same national restaurant franchise. All 17 cases were adults and 14/17 (82.4%) were female. Ingredient-level analyses of the meals consumed by the cases identified spring onions as the common ingredient. Food chain investigations revealed that the spring onions served at the implicated restaurants could be traced back to a single Egyptian producer. The foodborne transmission of ESBL-producing bacteria is an emerging global health concern, and concerted action from all stakeholders is required to ensure an effective response to mitigate the risks to public health

    Recurrent seasonal outbreak of an emerging serotype of Shiga toxin-producing Escherichia coli (STEC O55:H7 stx 2a) in the south west of England, July 2014 to September 2015

    Get PDF
    The first documented British outbreak of Shiga toxin-producing Escherichia coli (STEC) O55:H7 began in the county of Dorset, England, in July 2014. Since then, there have been a total of 31 cases of which 13 presented with haemolytic uraemic syndrome (HUS). The outbreak strain had Shiga toxin (stx) subtype 2a associated with an elevated risk of HUS. This strain had not previously been isolated from humans or animals in England. The only epidemiological link was living in or having close links to two areas in Dorset. Extensive investigations included testing of animals and household pets. Control measures included extended screening, iterative interviewing and exclusion of cases and high risk contacts. Whole genome sequencing (WGS) confirmed that all the cases were infected with similar strains. A specific source could not be identified. The combination of epidemiological investigation and WGS indicated, however, that this outbreak was possibly caused by recurrent introductions from a local endemic zoonotic source, that a highly similar endemic reservoir appears to exist in the Republic of Ireland but has not been identified elsewhere, and that a subset of cases was associated with human-to-human transmission in a nursery
    corecore