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Abstract  21 

Aim:  To investigate factors influencing Campylobacter spp. colonisation of broiler chickens.  22 

Methods and Results: Campylobacters were isolated from caeca from 319 flocks of two 23 

different breeds (199 Cobb and 120 Hubbard), reared as standard (199), freedom-food/corn fed 24 

(57), free-range (47) or organic (16). . The standard category exclusively used Cobb birds 25 
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slaughtered at 38-41 days. The Freedom Food/corn-fed and free range Hubbard birds were 26 

slaughtered at 49-56 days and the organic flocks at 70 days. Campylobacters  were picked at 27 

random from direct plates. Both breed of chicken (Hubbard) and age at slaughter were 28 

independently associated with increased likelihood of colonisation by C. coli rather than C. 29 

jejuni, but breed could not be separated from other aspects of husbandry with the data available.  30 

Conclusions: Chickens are frequently colonised by C. jejuni and C. coli and most human 31 

infections originate from poultry. In most developed countries approximately 90% of human 32 

infections are caused by C. jejuni, but fewer than 10% by C. coli. This might be due to C. coli 33 

being less pathogenic than C. jejuni to humans, and/or to chicken meat carrying fewer C. coli 34 

than C. jejuni. More investigations are needed into these aspects before it can be concluded that 35 

slaughtering older birds from slower-growing breeds would reduce the risk of human 36 

Campylobacter disease.  37 

Significance and impact of the study: Meat from certain breeds of poultry are predominantly 38 

colonised by C. coli rather than C. jejuni.  More research is needed to understand the impact 39 

this may have on the number and severity of  human campylobacter infections.  40 

 41 

Keywords: Breed; broilers; free-range; organic; age at slaughter; Campylobacter jejuni; 42 

Campylobacter coli. 43 

 44 

Introduction 45 

Campylobacter spp. are widely regarded as the most common cause of bacterial gastroenteritis 46 

in industrialised countries, including Europe (Ketley 1997; EFSA 2011; Marotta et al. 2015; 47 

Seliwiorstow et al. 2016; EFSA, 2019).  The number of confirmed cases of human 48 

campylobacteriosis reported in the European Union (EU) has stayed relatively constant since 49 

2005, with over 246,000 (about 65 per 100,000 population), in both 2017 and 2018 (EFSA & 50 
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ECDC 2018; EFSA 2019).  Systems for reporting campylobacteriosis vary between different 51 

EU member countries (EFSA & ECDC 2018).  Many cases are not reported, and as many as 9 52 

million people are estimated to suffer from campylobacteriosis annually in the EU (Havelaar et 53 

al. 2013). The cost of campylobacteriosis for the member countries of the European Union is 54 

between 500 and 5000 million euros per year (EFSA, 2011; Robyn et al. 2015).  C. jejuni and 55 

C. coli are the most frequently reported species in human cases of Campylobacter infection 56 

(WHO 2018), causing approximately 90 % and 10 % of cases, respectively (Gillespie et al. 57 

2002; Nielsen et al. 2006; EFSA & ECDC 2018; EFSA 2019; Table 1).  The situation is similar 58 

in other developed and developing countries (WHO 2018).  59 

The sources of human Campylobacter infection vary but a significant proportion comes from 60 

poultry (EFSA 2010; Cody et al. 2019) where these bacteria colonise the intestine, producing 61 

few, if any adverse symptoms in the birds (Corry and Atabay 2001). The mean EU 62 

Campylobacter prevalence in broiler flocks was 71% in 2018, while 37.5% of raw broiler meat 63 

samples were reported positive, however, the proportion of chicken flocks colonised by 64 

Campylobacter sp. at slaughter varies widely, depending on the member state (Norway, Sweden 65 

and Finland have low proportions) and the time of year (high in summer and lower in winter) 66 

(EFSA 2019).  Table 1 summarises the latest EU data on the proportion of human cases infected 67 

with C. jejuni or C. coli and compares them with the species isolated from broiler flocks and 68 

broiler meat (EFSA, 2019).  Previous studies undertaken in England have found that 98 % of 69 

Campylobacter-positive samples from raw poultry meat contained C. jejuni and only 2 % C. 70 

coli (Jorgensen et al. 2002).  Näther et al. (2009) found that of 146 intensively-reared flocks, 71 

64 tested positive for Campylobacter spp, and, of the positive flocks, 66% were colonised by 72 

C. jejuni and 33% by C. coli.  The association of campylobacters with poultry in developing 73 

countries is similar.  (Kottawatta et al. 2017; Mageto et al. 2018).  74 
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 In contrast, C. coli rather than C. jejuni is commonly isolated from pigs (Madden et al. 75 

2007; Sheppard et al. 2009), so contaminated pork and pork products may account for a 76 

proportion of the C. coli infections seen in humans. Gillespie et al. (Gillespie et al. 2002) found 77 

that patients with C. coli infection were more likely to have eaten liver pâté, a predominantly 78 

pork-based product, than were patients with C. jejuni infection. However, chicken meat 79 

contaminated with C. coli may still play a part, as high numbers of this species have previously 80 

been isolated from both free-range (43 %) and organic (92 %) flocks (El-Shibiny et al. 2005). 81 

Undercooked chicken livers have been implicated in a number of Campylobacter outbreaks and 82 

sporadic infections in the UK (Forbes et al. 2009; Little et al. 2010; Strachan et al. 2013). 83 

For standard rearing, modern poultry breeds are selected to grow rapidly in closed poultry 84 

houses in order to reduce costs and meet market-demand as soon as possible. However, 85 

intensive rearing can cause problems, including weak legs due to their rapid weight gain, and 86 

foot problems associated with poor litter quality (Bessei et al. 2006; Knowles et al. 2008; 87 

Granquist et al. 2019). Also, concern among consumers with respect to welfare has encouraged 88 

the use of alternative, more welfare-friendly, rearing systems, such as the RSPCA “Freedom 89 

Food” standard (<rspcaassured.org.uk/farm-animal-welfare/>) which include low stocking 90 

density, perches and other environmental enrichment, and access to the outside (‘free range’), 91 

or provision of organic feed in addition to outside access (‘organic’).  These rearing systems 92 

are called ‘extensive’, in contrast to the more common ‘intensive’ system used for rearing 93 

broilers.  94 

 The ‘freedom-food’ and ‘corn-fed’ chickens studied in our survey were reared indoors, 95 

but were a different breed (Hubbard) and grew more slowly than the standard intensively-reared 96 

birds. Hubbard chickens were also used for organically-fed and free-range birds.  Extensively 97 

reared birds have a lower stocking density, grow more slowly, and are reared for 56 - 80 days, 98 

compared to the 32 - 42 days required for intensively-reared broilers. Intensively-reared birds 99 
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are most often colonized by campylobacters at around 3 weeks of age, while organic and free-100 

range chickens are colonised earlier, often coinciding with the time at which they are allowed 101 

out of their brooding houses (Allen et al. 2011). Caecal contents are considered better than 102 

faeces or samples from other parts of the chicken intestine for monitoring the true prevalence 103 

of Campylobacter colonisation (Vidal 2012; Allain et al. 2014).  Numbers of campylobacters 104 

in caecal contents at slaughter (≈log10 6.5 cfu per g) do not differ significantly between 105 

intensively- and extensively-reared birds (Allen et al. 2011; Williams et al. 2013). Intensively-106 

reared chicken meat is still the most widely consumed in the UK, with organic and free-range 107 

chicken meat comprising <1% and about 4.5% respectively 108 

(https://www.statista.com/statistics/299050/organic-poultry-numbers-in-the-united-kingdom-109 

uk/).  110 

 In this study we looked at the species of Campylobacter isolated from chicken caeca at 111 

slaughter and its relation to breed of flock, rearing-regime and age at slaughter. 112 

 113 

Materials and methods 114 

 115 

Collection of samples 116 

Flocks (319) were sampled from three UK poultry processing plants (A, B and C) between 117 

December 2003 and October 2008. Flocks were defined as all birds originating from the same 118 

house/shed on a farm. The flocks comprised two different breeds: Cobb (199 flocks) and 119 

Hubbard (120 flocks). The Cobb flocks were all reared intensively as standard birds. Abattoirs 120 

A and C processed only intensively-reared Cobb flocks (82 and 69 flocks respectively), while 121 

Abattoir B processed 48 Cobb flocks and 120 Hubbard flocks. Of the 120 Hubbard flocks, 16 122 

were reared as organic, 47 were reared as free range, while 57 were reared intensively according 123 

to the Freedom-Food or Freedom Food (Corn-Fed) specifications.  The age of the flocks at 124 

https://www.statista.com/statistics/299050/organic-poultry-numbers-in-the-united-kingdom-uk/
https://www.statista.com/statistics/299050/organic-poultry-numbers-in-the-united-kingdom-uk/
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slaughter varied from 38-41 days for the standard (Cobb) flocks, 49-56 days for the free range, 125 

corn-fed and freedom foods (Hubbard) flocks and 70 days for the organic flocks.  126 

 Four flocks were selected at random by the processing plant operatives on each 127 

sampling day and at least four pairs of caeca were collected from each flock. All caeca were 128 

transported to the laboratory on ice, where they were refrigerated, if necessary, prior to analysis. 129 

Care was taken to make sure that the caeca were not frozen, which could have inactivated 130 

campylobacters, and analysis was carried out within 24 h.   131 

 132 

Detection and isolation of Campylobacter 133 

All caeca from all the flocks were examined by plating to determine whether or not the flocks 134 

were colonised by Campylobacter. One caecum from each pair of caeca was placed in a sterile 135 

Petri dish and a swab of caecal content was spread directly onto modified Charcoal 136 

Cefoperazone Deoxycholate Agar (mCCDA), (Oxoid, Basingstoke, UK, CM739 with SR155 137 

supplement). Plates were incubated microaerobically in an atmosphere comprising 5 - 6 % 138 

oxygen, 3 - 7 % carbon dioxide and 7 % hydrogen in a balance of nitrogen, at 41.5 °C for 24 - 139 

48 h.   Flocks which were not fully positive, or negative for Campylobacter (i.e. where some or 140 

all plates contained few or no Campylobacter colonies) were not further studied. Plates from 141 

Campylobacter-colonised flocks contained high numbers of colonies that all looked similar. In 142 

most cases two colonies were picked at random, but due to limited resources, in some instances 143 

only one colony per sample was picked. The colonies were subcultured onto duplicate plates of 144 

Columbia Blood agar (CBA) with 5 % (v/v) defibrinated horse blood (Oxoid, PB0122). One 145 

set of plates was incubated aerobically and the other microaerobically at 41.5 °C for 48 h. 146 

Colonies that had grown under microaerobic but not aerobic conditions were confirmed as 147 

Campylobacter spp. by a positive oxidase test and the confirmed Campylobacter isolates were 148 

stored using cryobeads (Microbank®) at -80 °C prior to further examination.  149 
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 150 

Speciation of Campylobacter isolates 151 

Stock beads were plated onto CBA (Columbia Blood Agar, Oxoid, pre-poured plates) and 152 

incubated in a microaerobic atmosphere at 37 ºC for 48 h. A DNA template was prepared by 153 

suspending a 10 µl loop of culture in 500 µl dH2O and heating at 100 ºC for 10 min. PCR was 154 

carried out according to a modified version of Wang et al. (2002), involving three primer sets 155 

(Table 2) designed to identify simultaneously the hipO gene from C. jejuni, the glyA gene from 156 

C. coli and 23S rRNA from Campylobacter spp. Each PCR reaction contained 25 µl HotStar 157 

Taq Master Mix  (Qiagen, Manchester, UK), 4 µl MgCl2  (25 mM), 4 µl primer mix (from stock 158 

mix containing 5 µl C. jejuni primers, 10 µl C. coli primers, 2 µl 23S rRNA primers and 43 µl 159 

nuclease-free water), 1 µl template DNA and 16 µl nuclease-free water to make a final volume 160 

of 50 µl. Amplification was carried out in a PTC-200 Peltier Thermal Cycler (MJ Research) 161 

under the conditions specified by Wang et al. (Wang et al. 2002), with the following 162 

modification: an initial denaturation step was carried out at 95 °C for 15 min. The PCR products 163 

were analysed by gel electrophoresis through 2 % (w/v) agarose, containing 1 µl ml-1 ethidium 164 

bromide, in 1 x TAE buffer. The DNA bands were visualised by means of an ultra-violet 165 

transilluminator (BioDoc-ItTM Imaging System, UPV). Five µl HyperladderTM І (Bioline) was 166 

used as a molecular marker. Isolates were confirmed as Campylobacter sp. if a band was present 167 

at 650 bp (23S rRNA). An isolate was determined as C. jejuni or C. coli if a band was present 168 

at 323 bp (hipO) or 126 bp (glyA) respectively. 169 

 170 

Analysis of results 171 

As all colonies looked similar, the first (or only) colony picked was regarded as a random 172 

sample.  Results from the first or only isolate picked were first tested for association between 173 

the species of Campylobacter isolated and breed and rearing regime by chi-square tests.  174 
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For samples from which two isolates had been obtained, the dependence of the species 175 

isolated (both colonies C. coli versus both colonies C. jejuni) on breed and age at slaughter 176 

(mean-centred days) was further examined by logistic regression analyses. Additionally, 177 

multinomial logistic regression was used to include the isolation of one colony of each species. 178 

All regressions were tested for goodness of fit by the chi-square method of Hosmer and 179 

Lemeshow (Hosmer and Lemeshow 1989). Calculations were done with SAS version 9.4. 180 

 181 

Results 182 

 183 

Speciation of isolates 184 

A higher proportion of standard (Cobb) flocks was sampled than non-standard (Hubbard) in all 185 

years except for 2008 (Table 3). Isolates (584 were speciated, 403 of which were C. jejuni, 178 186 

C. coli and three of which were Campylobacter species other than C. jejuni or C. coli). Overall, 187 

C. jejuni was the first isolate identified from 72 % of flocks while C. coli was the first identified 188 

isolate from 28 % of flocks.   189 

 190 

Species of Campylobacter in relation to flock type 191 

C. jejuni was more prevalent in Cobb birds reared as standard than in Hubbard birds reared as 192 

either free-range (16 flocks), freedom food/corn-fed (57 flocks) or organic (47 flocks) (Table 193 

4; Figure 1). Based on the first isolate speciated, there was a significant association between the 194 

breed of the chicken flock and the species of Campylobacter colonising the flock (Chi-square 195 

test; P < 0.001). Omitting flocks where only one isolate was identified, both C. jejuni and C. 196 

coli were identified from 21 flocks when a second isolate from 121 standard and 102 Hubbard 197 

flocks was examined (Table 5). For these 223 flocks there was a significant association between 198 

breed and species of Campylobacter colonising the flock (Chi-square test; P < 0.001). All the 199 
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Hubbard flocks were markedly older at slaughter than the Cobb flocks, and it was clear that 200 

there was a correlation between age at slaughter and breed of chicken. These factors were 201 

further investigated by logistic regression analysis on data from abattoir B only. The outcomes 202 

modelled were: both colonies C. jejuni versus both colonies C. coli.    203 

 Both breed and age at slaughter were independently associated with outcome. For age 204 

at slaughter, the Odds Ratio (OR, 95% Confidence Interval) = 1.116 (1.072, 1.162). For Cobb 205 

versus Hubbard, OR = 0.232 (0.081, 0.667). Owing to the evident correlation between breed 206 

and age at slaughter, the effect of the latter was confirmed by analysing each breed separately 207 

with statistically significant results: for Cobb flocks, OR = 1.163 (1.071, 1.261); for Hubbard 208 

flocks, OR = 1.097 (1.048, 1.148). Colonisation by C. coli was favoured by later age at slaughter 209 

and by breed being Hubbard. 210 

Additionally, multinomial logistic regression was used to include the identification of 211 

one colony of each species (mixed colonisation).  This showed that age at slaughter had a 212 

significant effect also when the outcome = one colony of C. coli + one colony of C. jejuni was 213 

compared with the outcome = two colonies of C. jejuni, OR=0.89 (0.85, 0.93)), but not when 214 

compared with two colonies of C. coli OR=0.99 (0.95, 1.040). Goodness of fit was satisfactory 215 

for all the regression models (Hosmer and Lemeshow 1989), and no significant interaction 216 

between factors was detected.   217 

 218 

Discussion 219 

Our study examined Campylobacter-colonised chickens at slaughter in order to investigate the 220 

factor(s) influencing the species (C. jejuni, C. coli or a mixture of the two species).  These 221 

factors included the strain of chicken (Cobb or Hubbard), rearing regime (intensive, extensive 222 

and diet) and age at slaughter.  Significant associations were found between both the strain of 223 

chicken (Hubbard more likely than Cobb birds to be colonised with C. coli) and age at slaughter 224 
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(older birds more likely to be colonised with C. coli). Both the breed of chicken and the age at 225 

slaughter were independently associated with an increasing likelihood of birds becoming 226 

colonised by C. coli rather than C. jejuni, but breed could not be separated from other aspects 227 

of husbandry using the data available. 228 

 Our observation that carriage of C. coli increases with the age of the birds is supported 229 

by the study of El-Shibiny et al. (El-Shibiny et al. 2007) who monitored Campylobacter species 230 

and campylobacter-specific phages in two Ross (a breed which we did not study) broiler flocks, 231 

in the United Kingdom, one reared as organic for 73 days, and a similar flock raised as free-232 

range on a second farm for 56 days. They found that C. jejuni was the dominant species in both 233 

flocks until approximately 35 days of age, after which C. coli became the dominant species 234 

until slaughter.  Studying the phages present, indicated that phages were not responsible for 235 

selecting the strains of Campylobacter colonising the birds.  The same research group (El-236 

Shibiney et al. 2007) carried out an in vitro experiment to investigate whether a particular strain 237 

of C. coli was antagonistic to a single strain of C. jejuni.  Results showed that each strain 238 

multiplied readily in the presence of the other, but with a low initial ratio of C. jejuni to C. coli, 239 

the C. jejuni exhibited a premature decline phase.  Laboratory studies using Ross broilers, 240 

colonised with the C. jejuni strain, showed that the C. coli strain outnumbered the C. jejuni 241 

strain only when the birds were 35 days old or more.  Similar results were found when three 242 

other C. jejuni strains were tested.  Although there are several other studies that indicate that 243 

chickens slaughtered later in their lives are more frequently colonised with C. coli, some (e.g. 244 

Cui et al. 2005) used an enrichment step, rather than direct plating, to detect Campylobacter, 245 

which could alter the proportion of each species present.  Work by Denis et al. (2008) with 246 

commercial flocks of undefined poultry strains failed to observe a relationship between C. coli 247 

colonisation and organic or free-range rearing.  Similarly, Colles et al. (Colles et al. 2010) found 248 

most campylobacters from 80- to 81-day-old chickens were C. jejuni.  They took swabs from 249 
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the anal area of live free-range “Hubbard crossbreed” birds at 80 days of age on farm, and 250 

carcass rinse samples from the same flocks the following day at the abattoir.  These sampling 251 

techniques risk contamination from litter and the abattoir environment respectively.  Of 222 252 

colonies from 25 live birds they found 81% C. jejuni and 19 % C. coli, while, of 250 colonies 253 

taken from 25 carcasses at the abattoir, they found 62% C. jejuni and 37% C. coli. . 254 

Our finding that the proportion of C. coli to C. jejuni colonising the chicken intestine 255 

increases with age, concurs with results from several other studies, but our observation that the 256 

breed of chicken also influences the predominating species of Campylobacter, is new. The 257 

increasing proportion of C. coli colonizing chickens during the rearing period is of interest 258 

because C. coli causes only about 10% of human Campylobacter cases while C. jejuni causes 259 

90%. Thus, meat from older birds may be less hazardous when consumed than meat from 260 

younger birds. Alternatively, the proportion of C. coli to C. jejuni cases might merely reflect 261 

the fact that most chickens are slaughtered and consumed at a young age, when C. jejuni 262 

predominates.  Currently there is no evidence that C. coli from chickens is less pathogenic for 263 

humans than C. jejuni from chickens, but appropriate non-pathogenic strain/s of C. coli might 264 

be suitable for competitive exclusion strategies to reduce the numbers of C. jejuni on poultry 265 

meat (see O’Kane and Connerton, 2017).  Further investigation of the effect of breed on the 266 

Campylobacter species predominating at slaughter might enable selection of breeds colonized 267 

by C. coli at a younger age. 268 

Both the breed of chicken and the age at slaughter were independently associated with an 269 

increasing proportion of birds being colonised by C. coli rather than C. jejuni.  As C. coli causes 270 

a lower number of human infections, slaughtering chickens from slower-growing breeds at an 271 

older age might reduce numbers of Campylobacter infections in the human population. This 272 

might be due to C. coli being less pathogenic than C. jejuni to humans, and/or to chicken meat 273 

carrying fewer C. coli than C. jejuni.  There is some evidence that C. jejuni strains carry a 274 
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greater number of virulence genes (Lapierre et al. 2016). Also. the fact that Guillain-Barré 275 

syndrome, a rare and severe disease in humans, sometimes follows a C. jejuni, but not a C. coli 276 

infection (Jasti et al. 2016), indicates that C. coli may be less pathogenic.  However, meat from 277 

these birds would be more expensive than from younger and faster-growing birds.  278 

Alternatively, it might be possible to select breeds which become colonised with C. coli at an 279 

earlier age, and/or to inoculate the chickens with a known low-pathogenic strain of C. coli.  This 280 

would yield cheaper meat. .  More investigations are needed into these aspects before it can be 281 

concluded that slaughtering older birds from slower-growing breeds would reduce the risk of 282 

human Campylobacter disease.  283 

 284 
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Fig. 1. Percentage of flocks with C. jejuni (dark grey) and C. coli (light grey) isolates in Cobb 439 

and Hubbard breeds of chicken. 440 
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 445 

Table 1 Proportions (%) of Campylobacter jejuni and C. coli isolates reported in  446 

the European Union in 2018* 447 

 C. jejuni C. coli 

Human cases 84 10 

Broiler flocks 63 37 

Broiler meat 76 24 

*EFSA (2019) 448 

 449 
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 465 

Table 2  Primer sequences used for speciation of Campylobacter isolates*. 466 

Species Gene Primer Sequence (5' - 3') 

Amplicon 

Size (bp) 

C. jejuni hipO CJF ACT TCT TTA TTG CTT GCT GC 323 

  CJR GCC ACA ACA AGT AAA GAA GC  

C. coli glyA CCF GTA AAA CCA AAG CTT ATC GTG 126 

  CCR TCC AGC AAT GTG TGC AAT G  

C. spp. 23S 23SF TAT ACC GGT AAG GAG TGC TGG AG 650 

    23SR ATC AAT TAA CCT TCG AGC ACC G   

*Wang et al. (2002) 467 

  468 



 

 23 

Table 3 Number of positive flocks investigated by breed and year of study. 469 

Breed 2004 2005 2006 2007 2008 

Cobb 89 78 21 7 4 

Hubbard 23 16 27 5 49 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 



 

 24 

Table 4 Number and percentage of Hubbard flocks slaughtered at Abattoir B with two C. jejuni 491 

or two C. coli isolates compared to rearing regime.   492 

Rearing Regime 

Number of flocks with  

two C. jejuni isolated (%) 

Number of flocks with two 

C. coli isolated (%) 

Freedom-

food/Corn-fed 24 (71) 10 (29) 

Free-range 5 (45) 6 (55) 

Organic 3 (9) 30 (91) 

 493 
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 501 
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Table 5 Numbers of flocks of each breed slaughtered in the three abattoirs, where two isolates 510 

were speciated, and the first and second isolates speciated were either both C. jejuni, or both C. 511 

coli or one of each species. 512 

Breed 

C. 

jejuni  C. coli Mixed 

 

Total 

Cobb 107 10 4 121 

Hubbard 32 46 4 82 

 513 

 514 

 515 


