135 research outputs found

    Crude incidence in two-phase designs in the presence of competing risks.

    Get PDF
    BackgroundIn many studies, some information might not be available for the whole cohort, some covariates, or even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence accounting for competing events has been proposed. This is relevant in the presence of multiple types of events, where estimation of event type specific quantities are needed for evaluating outcome.MethodsWe develop a non parametric estimator of the cumulative incidence function of events accounting for possible competing events. It handles a general sampling design by weights derived from the sampling probabilities. The variance is derived from the influence function of the subdistribution hazard.ResultsThe proposed method shows good performance in simulations. It is applied to estimate the crude incidence of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in a subsample of lost patients and to obtain a valid estimate of connection to care.ConclusionsA valid estimator for cumulative incidence of events accounting for competing risks under a general sampling design from an infinite target population is derived

    The combined use of Er,Cr:YSGG laser and fluoride to prevent root dentin demineralization

    Full text link
    The use of erbium lasers to prevent caries in enamel has shown positive results. However, it is not known if Er,Cr:YSGG laser can also be used to increase acid resistance of root dentine, which is another dental tissue susceptible to the action of cariogenic bacteria. Objective: To analyze the effects of the Er,Cr:YSGG laser (λ=2.78 μm, 20 Hz) irradiation associated with 2% neutral sodium fluoride (NaF) to prevent root dentin demineralization. Material and Methods: One hundred human root dentin samples were divided into 10 groups (G) and treated as follows: G1: no treatment; G2: NaF; G3: laser (4.64 J/cm2) with water cooling (WC=5.4 mL/min); G4: laser (4.64 J/cm2) without WC; G5: laser (8.92 J/cm2) with WC; G6: laser (8.92 J/cm2) without WC; G7: laser (4.64 J/cm2) with WC and NaF; G8: laser (4.64 J/cm2) without WC and NaF; G9: laser (8.92 J/cm2) with WC and NaF; G10: laser (8.92 J/cm2) without WC and NaF. The NaF gel was applied alone or after 4 min of irradiation. After 14 days of acid challenge, the samples were sectioned and the Knoop microhardness (KHN) test was done at different depths (30, 60, 90 and 120 μm) from the outer dentin surface. Data were analyzed by one-way ANOVA and Fisher’s test (α=5%). Results: The results showed that G8 and G10 presented higher KHN than the G1 for the depths of 30 and 60 μm, indicating an increase of the acid resistance of the dentin in up to 35% (p<0.05). Conclusions: The use of Er,Cr:YSGG laser irradiation at 4.64 J/ cm2 and 8.92 J/cm2 without water cooling and associated with 2% NaF can increase the acid resistance of human root dentin

    Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?

    Get PDF
    The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages.This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery

    Further Support to the Uncoupling-to-Survive Theory: The Genetic Variation of Human UCP Genes Is Associated with Longevity

    Get PDF
    In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly

    Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome

    Get PDF
    Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases
    corecore