2,036 research outputs found
Open-Source ANSS Quake Monitoring System Software
ANSS stands for the Advanced National Seismic System of the U.S.A., and ANSS Quake Monitoring System (AQMS) is the earthquake management system (EMS) that most of its member regional seismic networks (RSNs) use. AQMS is based on Earthworm, but instead of storing files on disk, it uses a relational database with replication capability to store pick, amplitude, waveform, and event parameters. The replicated database and other features of AQMS make it a fully redundant system. A graphical user interface written in Java, Jiggle, is used to review automatically generated picks and event solutions, relocate events, and recalculate magnitudes. Add‐on mechanisms to produce various postearthquake products such as ShakeMaps and focal mechanisms are available as well. It provides a configurable automatic alarming and notification system. The Pacific Northwest Seismic Network, one of the Tier 1 ANSS RSNs, has modified AQMS to be compatible with a freely available, capable, open‐source database system, PostgreSQL, and is running this version successfully in production. The AQMS Software Working Group has moved the software from a subversion repository server hosted at the California Institute of Technology to a public repository at gitlab.com. The drawback of AQMS as a whole is that it is complex to fully configure and comprehend. Nevertheless, the fact that it is very capable, documented, and now free to use, might make it an attractive EMS choice for many seismic networks
Phase transitions and the internal noise structure of nonlinear Schr\"odi nger equation solitons
We predict phase-transitions in the quantum noise characteristics of systems
described by the quantum nonlinear Schr\"odinger equation, showing them to be
related to the solitonic field transition at half the fundamental soliton
amplitude. These phase-transitions are robust with respect to Raman noise and
scattering losses. We also describe the rich internal quantum noise structure
of the solitonic fields in the vicinity of the phase-transition. For optical
coherent quantum solitons, this leads to the prediction that eliminating the
peak side-band noise due to the electronic nonlinearity of silica fiber by
spectral filtering leads to the optimal photon-number noise reduction of a
fundamental soliton.Comment: 10 pages, 5 figure
Open-Source ANSS Quake Monitoring System Software
ANSS stands for the Advanced National Seismic System of the U.S.A., and ANSS Quake Monitoring System (AQMS) is the earthquake management system (EMS) that most of its member regional seismic networks (RSNs) use. AQMS is based on Earthworm, but instead of storing files on disk, it uses a relational database with replication capability to store pick, amplitude, waveform, and event parameters. The replicated database and other features of AQMS make it a fully redundant system. A graphical user interface written in Java, Jiggle, is used to review automatically generated picks and event solutions, relocate events, and recalculate magnitudes. Add‐on mechanisms to produce various postearthquake products such as ShakeMaps and focal mechanisms are available as well. It provides a configurable automatic alarming and notification system. The Pacific Northwest Seismic Network, one of the Tier 1 ANSS RSNs, has modified AQMS to be compatible with a freely available, capable, open‐source database system, PostgreSQL, and is running this version successfully in production. The AQMS Software Working Group has moved the software from a subversion repository server hosted at the California Institute of Technology to a public repository at gitlab.com. The drawback of AQMS as a whole is that it is complex to fully configure and comprehend. Nevertheless, the fact that it is very capable, documented, and now free to use, might make it an attractive EMS choice for many seismic networks
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
Optimized quantum nondemolition measurement of a field quadrature
We suggest an interferometric scheme assisted by squeezing and linear
feedback to realize the whole class of field-quadrature quantum nondemolition
measurements, from Von Neumann projective measurement to fully non-destructive
non-informative one. In our setup, the signal under investigation is mixed with
a squeezed probe in an interferometer and, at the output, one of the two modes
is revealed through homodyne detection. The second beam is then
amplitude-modulated according to the outcome of the measurement, and finally
squeezed according to the transmittivity of the interferometer. Using strongly
squeezed or anti-squeezed probes respectively, one achieves either a projective
measurement, i.e. homodyne statistics arbitrarily close to the intrinsic
quadrature distribution of the signal, and conditional outputs approaching the
corresponding eigenstates, or fully non-destructive one, characterized by an
almost uniform homodyne statistics, and by an output state arbitrarily close to
the input signal. By varying the squeezing between these two extremes, or
simply by tuning the internal phase-shift of the interferometer, the whole set
of intermediate cases can also be obtained. In particular, an optimal quantum
nondemolition measurement of quadrature can be achieved, which minimizes the
information gain versus state disturbance trade-off
Global Study of Electron-Quark Contact Interactions
We perform a global fit of data relevant to contact interactions,
including deep inelastic scattering at high from ZEUS and H1, atomic
physics parity violation in Cesium from JILA, polarized on nuclei
scattering experiments at SLAC, Mainz and Bates, Drell-Yan production at the
Tevatron, the total hadronic cross section at LEP, and
neutrino-nucleon scattering from CCFR. With only the new HERA data, the
presence of contact interactions improves the fit compared to the Standard
Model. When other data sets are included, the size of the contact contributions
is reduced and the overall fit represents no real improvement over the Standard
Model.Comment: 26 pages (now single-spaced), Revtex, 2 eps figures, uses epsf.sty.
Some clarifications, minor corrections, 2 new references, also 3 new tables
which present 95% CL bounds on the contact interaction scales Lambd
Microtiming patterns and interactions with musical properties in Samba music
In this study, we focus on the interaction between microtiming patterns and several musical properties: intensity, meter and spectral characteristics. The data-set of 106 musical audio excerpts is processed by means of an auditory model and then divided into several spectral regions and metric levels. The resulting segments are described in terms of their musical properties, over which patterns of peak positions and their intensities are sought. A clustering algorithm is used to systematize the process of pattern detection. The results confirm previously reported anticipations of the third and fourth semiquavers in a beat. We also argue that these patterns of microtiming deviations interact with different profiles of intensities that change according to the metrical structure and spectral characteristics. In particular, we suggest two new findings: (i) a small delay of microtiming positions at the lower end of the spectrum on the first semiquaver of each beat and (ii) systematic forms of accelerando and ritardando at a microtiming level covering two-beat and four-beat phrases. The results demonstrate the importance of multidimensional interactions with timing aspects of music. However, more research is needed in order to find proper representations for rhythm and microtiming aspects in such contexts
Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008-2010 based on CARIBIC observations
Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska), Sarychev (Russia) and also during the Eyjafjallajökull (Iceland) eruptions in the period 2008–2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10–12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajökull in spring 2010. Elemental concentrations of the collected aerosol were obtained by acceleratorbased analysis. Aerosol from the Eyjafjallajökull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajökull were dominated by the ash and sulphate component (~45% each) while samples collected in the tropopause region and LMS mainly consisted of sulphate (50–77 %) and carbon (21–43 %). These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e) of sulphur dioxide in the studied volcanic cloud was estimated to be 45±22 days
Hadron attenuation in deep inelastic lepton-nucleus scattering
We present a detailed theoretical investigation of hadron attenuation in deep
inelastic scattering (DIS) off complex nuclei in the kinematic regime of the
HERMES experiment. The analysis is carried out in the framework of a
probabilistic coupled-channel transport model based on the
Boltzmann-Uehling-Uhlenbeck (BUU) equation, which allows for a treatment of the
final-state interactions (FSI) beyond simple absorption mechanisms.
Furthermore, our event-by-event simulations account for the kinematic cuts of
the experiments as well as the geometrical acceptance of the detectors. We
calculate the multiplicity ratios of charged hadrons for various nuclear
targets relative to deuterium as a function of the photon energy nu, the hadron
energy fraction z_h=E_h/nu and the transverse momentum p_T. We also confront
our model results on double-hadron attenuation with recent experimental data.
Separately, we compare the attenuation of identified hadrons (pi^\pm, \pi^0,
K^\pm, p and pbar) on Ne and Kr targets with the data from the HERMES
Collaboration and make predictions for a Xe target. At the end we turn towards
hadron attenuation on Cu nuclei at EMC energies. Our studies demonstrate that
(pre-)hadronic final-state interactions play a dominant role in the kinematic
regime of the HERMES experiment while our present approach overestimates the
attenuation at EMC energies.Comment: 61 pages, 19 figures, version accepted for publication in Phys. Rev.
- …