12 research outputs found

    Conditional and constitutive expression of a Tbx1-GFP fusion protein in mice.

    Get PDF
    BACKGROUND: Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is caused by a 1.5-3 Mb microdeletion of chromosome 22q11.2, frequently referred to as 22q11.2 deletion syndrome (22q11DS). This region includes TBX1, a T-box transcription factor gene that contributes to the etiology of 22q11DS. The requirement for TBX1 in mammalian development is dosage-sensitive, such that loss-of-function (LOF) and gain-of-function (GOF) of TBX1 in both mice and humans results in disease relevant congenital malformations. RESULTS: To further gain insight into the role of Tbx1 in development, we have targeted the Rosa26 locus to generate a new GOF mouse model in which a Tbx1-GFP fusion protein is expressed conditionally using the Cre/LoxP system. Tbx1-GFP expression is driven by the endogenous Rosa26 promoter resulting in ectopic and persistent expression. Tbx1 is pivotal for proper ear and heart development; ectopic activation of Tbx1-GFP in the otic vesicle by Pax2-Cre and Foxg1-Cre represses neurogenesis and produces morphological defects of the inner ear. Overexpression of a single copy of Tbx1-GFP using Tbx1Cre/+ was viable, while overexpression of both copies resulted in neonatal lethality with cardiac outflow tract defects. We have partially rescued inner ear and heart anomalies in Tbx1Cre/- null embryos by expression of Tbx1-GFP. CONCLUSIONS: We have generated a new mouse model to conditionally overexpress a GFP-tagged Tbx1 protein in vivo. This provides a useful tool to investigate in vivo direct downstream targets and protein binding partners of Tbx1

    Characterization of the past and current duplication activities in the human 22q11.2 region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders.</p> <p>Results</p> <p>To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young <it>Alu </it>SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young <it>AluY</it>s at their breakpoints.</p> <p>Conclusions</p> <p>Our study indicates that <it>AluY</it>s are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and <it>Alu </it>elements.</p

    Overlapping Definitive Progenitor Waves Divide and Conquer to Build a Layered Hematopoietic System

    No full text
    We are indebted to Baptiste Saudemont and Yann Loe-Mie for critical advice, training, reagents and quality control for the MARS-Seq pipeline.We would like tothankRebecca Gentek, Marc Bajénoff (CIML in Marseille) and Kémy Adefor providing and acquiring exploratory data for Cdh5CreERT2experiments, Pascal Dardenne and Yvan Lallemand for handling and injections of mice, Sébastien Bastide and Caroline Kaiser for advice on scRNA-Seq analysis with Seurat, Tobias Weinberger and Rebeca Ponce Landete for isolation of adult tissues, Anne Dejean for transfer of the Cdh5CreERT2strainand other members of the Gomez Perdiguero and Cumano groups for critical discussions and feedback. We appreciate the support and advice of the Cytometry and Biomarkers (UTECHS CB) platform (Sophie Novault and Sandrine Schmutz), the Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), the Institute PasteurSingle Cell Initiative (Heather Marlow) and the Animalerie Centrale.ABSTRACT Adult innate immune cells are part of a layered hematopoietic system constructed from definitive hematopoietic stem and progenitor cells (HSPC) with diverse origins during development. One source of HSPC are fetal hematopoietic stem cells (HSC) that provide long-term reconstitution throughout life. However, the extent to which HSC produce mature cells in utero is only recently being uncovered. This is in part due to the added complexity of an overlapping wave of definitive progenitors that derive from yolk sac erythro-myeloid progenitors (EMP). HSC and EMP are generated from spatiotemporally distinct hemogenic endothelia, yet they both migrate to the fetal liver niche where they co-habitate and are presumed to reach their full potential. Delineation of the respective HSC and EMP pathways towards developmental immune cell differentiation has been confounded by challenges in ontogeny-specific cell labeling. In this study, in vivo inducible pulse chase labeling revealed that HSC contribute little to fetal myelopoiesis and that EMP are the predominant source of mature myeloid cells until birth. This is similar to what has been reported for the erythroid branch of hematopoiesis thereby establishing a developmentally-restricted privilege for erythro-myeloid differentiation from EMP compared to HSC. Tracing the origins of mature cells to the progenitor level by immunophenotyping and single cell RNA sequencing uncovered a dichotomy in the allocation of fetal liver EMP and HSC to myeloid progenitor subsets, both in timing and lineage bias. This has exposed an uncoupling between developmental granulopoiesis and monopoiesis from EMP and HSC pathways, and provides a framework for future studies of HSC-dependent and -independent hematopoiesis. HIGHLIGHTS EMP-to-HSC switch in fetal liver myelopoiesis occurs late in gestation EMP are efficient at producing early transit amplifying erythroid and myeloid intermediates scRNA-seq reveals three trajectories of EMP myelopoiesis Myeloid lineage commitment during development is cell type and ontogeny specifi

    Megakaryocyte production is sustained by direct differentiation from erythromyeloid progenitors in the yolk sac until midgestation

    No full text
    International audienceThe extra-embryonic yolk sac contains the first definitive multipotent hematopoietic cells, denominated erythromyeloid progenitors. They originate in situ prior to the emergence of hematopoietic stem cells and give rise to erythroid, monocytes, granulocytes, mast cells and macrophages, the latter in a Myb transcription factor-independent manner. We uncovered here the heterogeneity of yolk sac erythromyeloid progenitors, at the single cell level, and discriminated multipotent from committed progenitors, prior to fetal liver colonization. We identified two temporally distinct megakaryocyte differentiation pathways. The first occurs in the yolk sac, bypasses intermediate bipotent megakaryocyte-erythroid progenitors and, similar to the differentiation of macrophages, is Myb-independent. By contrast, the second originates later, from Myb-dependent bipotent progenitors expressing Csf2rb and colonize the fetal liver, where they give rise to megakaryocytes and to large numbers of erythrocytes. Understanding megakaryocyte development is crucial as they play key functions during vascular development, in particular in separating blood and lymphatic networks

    Erythro-myeloid progenitor origin of Hofbauer cells in the early mouse placenta

    No full text
    International audienceABSTRACT Hofbauer cells (HBCs) are tissue macrophages of the placenta thought to be important for fetoplacental vascular development and innate immune protection. The developmental origins of HBCs remain unresolved and could implicate functional diversity of HBCs in placenta development and disease. In this study, we used flow cytometry and paternally inherited reporters to phenotype placenta macrophages and to identify fetal-derived HBCs and placenta-associated maternal macrophages in the mouse. In vivo pulse-labeling traced the ontogeny of HBCs from yolk sac-derived erythro-myeloid progenitors, with a minor contribution from fetal hematopoietic stem cells later on. Single-cell RNA-sequencing revealed transcriptional similarities between placenta macrophages and erythro-myeloid progenitor-derived fetal liver macrophages and microglia. As with other fetal tissue macrophages, HBCs were dependent on the transcription factor Pu.1, the loss-of-function of which in embryos disrupted fetoplacental labyrinth morphology, supporting a role for HBC in labyrinth angiogenesis and/or remodeling. HBC were also sensitive to Pu.1 (Spi1) haploinsufficiency, which caused an initial deficiency in the numbers of macrophages in the early mouse placenta. These results provide groundwork for future investigation into the relationship between HBC ontogeny and function in placenta pathophysiology

    Yolk sac, but not hematopoietic stem cell–derived progenitors, sustain erythropoiesis throughout murine embryonic life

    No full text
    International audienceIn the embryo, the first hematopoietic cells derive from the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. We used three lineage-tracing mouse models to show that, contrary to what was previously assumed, hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac erythromyeloid progenitors, which generate tissue resident macrophages, identified highly proliferative erythroid progenitors that rapidly differentiate after intra-embryonic injection, persisting as the major contributors to the embryonic erythroid compartment. We show that erythrocyte progenitors of yolk sac origin require 10-fold lower concentrations of erythropoietin than their hematopoietic stem cell-derived counterparts for efficient erythrocyte production. We propose that, in a low erythropoietin environment in the fetal liver, yolk sac-derived erythrocyte progenitors efficiently outcompete hematopoietic stem cell progeny, which fails to generate megakaryocyte and erythrocyte progenitors

    Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives

    No full text
    Apela (also known as Elabela, Ende, and Toddler) is a small signaling peptide that activates the G-protein-coupled receptor Aplnr to stimulate cell migration during zebrafish gastrulation. Here, using CRISPR/Cas9 to generate a null, reporter-expressing allele, we study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low-penetrance cardiovascular defects that manifest after the onset of circulation. Three-dimensional micro-computed tomography revealed a higher penetrance of vascular remodeling defects, from which some mutants recover, and identified extraembryonic anomalies as the earliest morphological distinction in Apela mutant embryos. Transcriptomics at late gastrulation identified aberrant upregulation of erythroid and myeloid markers in mutant embryos prior to the appearance of physical malformations. Double-mutant analyses showed that loss of Apela signaling impacts early Aplnr-expressing mesodermal populations independently of the alternative ligand Apelin, leading to lethal cardiac defects in some Apela null embryos

    A wave of bipotent T/ILC-restricted progenitors shapes the embryonic thymus microenvironment in a time-dependent manner

    No full text
    International audienceDuring embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here we show that the first wave of thymic progenitors comprises a unique population of bipotent cells generating lymphoid tissue inducer, in addition to invariant Vg5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and more precisely the lymphoid tissue inducer associated transcripts were expressed in the first but not in the second wave of thymic progenitors. Depletion of early thymic progenitors in a temporally-controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator expressing medullary thymic epithelial cells. We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid associated transcripts in yolk sac erythro-myeloid restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system
    corecore