3 research outputs found
Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence
Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment
Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease
In the amyloidogenic pathway associated with Alzheimer disease (AD), the
amyloid precursor protein (APP) is cleaved by beta-secretase to generate
a 99-aa C-terminal fragment (C99) that is then cleaved by c-secretase to
generate the beta-amyloid (Ab) found in senile plaques. In previous
reports, we and others have shown that c-secretase activity is enriched
in mitochondria-associated endoplasmic reticulum (ER) membranes (MAM)
and that ER-mitochondrial connectivity and MAM function are upregulated
in AD. We now show that C99, in addition to its localization in
endosomes, can also be found in MAM, where it is normally processed
rapidly by c-secretase. In cell models of AD, however, the concentration
of unprocessed C99 increases in MAM regions, resulting in elevated
sphingolipid turnover and an altered lipid composition of both MAM and
mitochondrial membranes. In turn, this change in mitochondrial membrane
composition interferes with the proper assembly and activity of
mitochondrial respiratory supercomplexes, thereby likely contributing to
the bioenergetic defects characteristic of AD.We thank Drs. Orian Shirihai and Marc Liesa (UCLA) for assistance with
the Seahorse measurements, Dr. Huaxi Xu (Sanford Burnham Institute) for
the APP-DKO MEFs and Dr. Mark Mattson (NIH) for the PS1 knock-in mice,
Drs. Arancio and Teich for the APP-KO mice tissues used in these
studies, Dr. Hua Yang (Columbia University) for mouse husbandry, and
Drs. Marc Tambini, Ira Tabas, and Serge Przedborski for helpful
comments. This work was supported by the Fundacion Alfonso Martin
Escudero (to M.P.); the Alzheimer's Drug Discovery Foundation, the
Ellison Medical Foundation, the Muscular Dystrophy Association, the U.S.
Department of Defense W911NF-12-1-9159 and W911F-15-1-0169), and the J.
Willard and Alice S. Marriott Foundation (to E.A.S.); the U.S. National
Institutes of Health (P01-HD080642 and P01-HD032062 to E.A.S.; NS071571
and HD071593 to M.F.M.; R01-NS056049 and P50-AG008702 to G.D.P.;
1S10OD016214-01A1 to G.S.P. and F.P.M, and K01-AG045335 to E.A.-G.), the
Lucien Cote Early Investigator Award in Clinical Genetics from the
Parkinson's Disease Foundation (PDF-CEI-1364 and PDF-CEI-1240) to
C.G.-L., and National Defense Science and Engineering Graduate
Fellowship (FA9550-11-C-0028) to R.R.A.S