906 research outputs found

    On the Behavior of the Homogeneous Self-Dual Model for Conic Convex Optimization

    Get PDF
    There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practic

    Theoretical Efficiency of A Shifted Barrier Function Algorithm for Linear Programming

    Get PDF
    This paper examines the theoretical efficiency of solving a standard-form linear program by solving a sequence of shifted-barrier problems of the form minimize cTx - n (xj + ehj) j.,1 x s.t. Ax = b , x + e h > , for a given and fixed shift vector h > 0, and for a sequence of values of > 0 that converges to zero. The resulting sequence of solutions to the shifted barrier problems will converge to a solution to the standard form linear program. The advantage of using the shiftedbarrier approach is that a starting feasible solution is unnecessary, and there is no need for a Phase I-Phase II approach to solving the linear program, either directly or through the addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm start," i.e., an initial guess of a primal solution x that need not be feasible. The number of iterations needed to solve the linear program to a desired level of accuracy will depend on a measure of how close the initial solution x is to being feasible. The number of iterations will also depend on the judicious choice of the shift vector h . If an approximate center of the dual feasible region is known, then h can be chosen so that the guaranteed fractional decrease in e at each iteration is (1 - 1/(6 i)) , which contributes a factor of 6 ii to the number of iterations needed to solve the problem. The paper also analyzes the complexity of computing an approximate center of the dual feasible region from a "warm start," i.e., an initial (possibly infeasible) guess ir of a solution to the center problem of the dual. Key Words: linear program, interior-point algorithm, center, barrier function, shifted-barrier function, Newton step

    A Potential Reduction Algorithm With User-Specified Phase I - Phase II Balance, for Solving a Linear Program from an Infeasible Warm Start

    Get PDF
    This paper develops a potential reduction algorithm for solving a linear-programming problem directly from a "warm start" initial point that is neither feasible nor optimal. The algorithm is of an "interior point" variety that seeks to reduce a single potential function which simultaneously coerces feasibility improvement (Phase I) and objective value improvement (Phase II). The key feature of the algorithm is the ability to specify beforehand the desired balance between infeasibility and nonoptimality in the following sense. Given a prespecified balancing parameter /3 > 0, the algorithm maintains the following Phase I - Phase II "/3-balancing constraint" throughout: (cTx- Z*) < /3TX, where cTx is the objective function, z* is the (unknown) optimal objective value of the linear program, and Tx measures the infeasibility of the current iterate x. This balancing constraint can be used to either emphasize rapid attainment of feasibility (set large) at the possible expense of good objective function values or to emphasize rapid attainment of good objective values (set /3 small) at the possible expense of a lower infeasibility gap. The algorithm exhibits the following advantageous features: (i) the iterate solutions monotonically decrease the infeasibility measure, (ii) the iterate solutions satisy the /3-balancing constraint, (iii) the iterate solutions achieve constant improvement in both Phase I and Phase II in O(n) iterations, (iv) there is always a possibility of finite termination of the Phase I problem, and (v) the algorithm is amenable to acceleration via linesearch of the potential function

    On Two Measures of Problem Instance Complexity and Their Correlation with the Performance of SeDuMi on Second-Order Cone Problems

    Get PDF
    We evaluate the practical relevance of two measures of conic convex problem complexity as applied to second-order cone problems solved using the homogeneous self-dual (HSD) embedding model in the software SeDuMi. The first measure we evaluate is Renegar’s data-based condition measure C(d), and the second measure is a combined measure of the optimal solution size and the initial infeasibility/optimality residuals denoted by S (where the solution size is measured in a norm that is naturally associated with the HSD model). We constructed a set of 144 secondorder cone test problems with widely distributed values of C(d) and S and solved these problems using SeDuMi. For each problem instance in the test set, we also computed estimates of C(d) (using PeËna’s method) and computed S directly. Our computational experience indicates that SeDuMi iteration counts and log(C(d)) are fairly highly correlated (sample correlation R = 0.676), whereas SeDuMi iteration counts are not quite as highly correlated with S (R = 0.600). Furthermore, the experimental evidence indicates that the average rate of convergence of SeDuMi iterations is affected by the condition number C(d) of the problem instance, a phenomenon that makes some intuitive sense yet is not directly implied by existing theory.This research has been partially supported through the MIT-Singapore Allianc

    Summary Conclusions on Computational Experience and the Explanatory Value of Condition Measures for Linear Optimization*

    Get PDF
    The modern theory of condition measures for convex optimization problems was initially developed for convex problems in conic format, and several aspects of the theory have now been extended to handle non-conic formats as well. In this theory, the (Renegar-) condition measure C(d) for a problem instance with data d=(A,b,c) has been shown to be connected to bounds on a wide variety of behavioral and computational characteristics of the problem instance, from sizes of optimal solutions to the complexity of algorithms. Herein we test the practical relevance of the condition measure theory, as applied to linear optimization problems that one might typically encounter in practice. Using the NETLIB suite of linear optimization problems as a test bed, we found that 71% of the NETLIB suite problem instances have infinite condition measure. In order to examine condition measures of the problems that are the actual input to a modern IPM solver, we also computed condition measures for the NETLIB suite problems after pre-preprocessing by CPLEX 7.1. Here we found that 19% of the post-processed problem instances in the NETLIB suite have infinite condition measure, and that log C(d) of the post-processed problems is fairly nicely distributed. Furthermore, there is a positive linear relationship between IPM iterations and log C(d) of the post-processed problem instances (significant at the 95% confidence level), and 42% of the variation in IPM iterations among the NETLIB suite problem instances is accounted for by log C(d) of the post-processed problem instances.Singapore-MIT Alliance (SMA
    • …
    corecore