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Abstract

This paper examines the theoretical efficiency of solving a standard-form linear

program by solving a sequence of shifted-barrier problems of the form

minimize cTx - n (xj + ehj)
j.,1

x

s.t. Ax = b , x + e h > ,

for a given and fixed shift vector h > 0, and for a sequence of values of > 0 that

converges to zero. The resulting sequence of solutions to the shifted barrier problems will

converge to a solution to the standard form linear program. The advantage of using the shifted-

barrier approach is that a starting feasible solution is unnecessary, and there is no need for a

Phase I-Phase II approach to solving the linear program, either directly or through the

addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm

start," i.e., an initial guess of a primal solution x that need not be feasible. The number of

iterations needed to solve the linear program to a desired level of accuracy will depend on a

measure of how close the initial solution x is to being feasible. The number of iterations will

also depend on the judicious choice of the shift vector h . If an approximate center of the dual

feasible region is known, then h can be chosen so that the guaranteed fractional decrease in

e at each iteration is (1 - 1/(6 i)) , which contributes a factor of 6 ii to the number of

iterations needed to solve the problem. The paper also analyzes the complexity of computing

an approximate center of the dual feasible region from a "warm start," i.e., an initial (possibly

infeasible) guess ir of a solution to the center problem of the dual.

Key Words: linear program, interior-point algorithm, center, barrier function, shifted-barrier

function, Newton step.
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1. Introduction

This paper examines the theoretical efficiency of an algorithm for solving a standard-

form linear program

minimize cTx

x

s.t. Ax=b, x 0O ,

by solving a sequence of shifted-barrier problems Sh () of the form:

Sh (): minimize cTx - n( + e hj)
ji-

x

s.t. Ax=b, x + h>O ,

for a given and fixed shift vector h > O, and for a sequence of values of > O that converges

to zero. At the beginning of each iteration, the algorithm has an approximate solution x to

the problem Sh () , for the current value of . A fractional quantity a < 1 is then

computed, and the new value of £ is chosen as £ = a E. The algorithm then computes a

Newton step, and the resulting new value of x is an approximate solution to problem Sh () .

The resulting sequence of solutions to the shifted barrier problems will converge to a solution to

the standard form linear program.

Problem Sh (e) given above is a specific instance of a more general problem introduced

in Gill et al. [71, namely

SBP (w, f): minimize cx - wjln()q + )
jil

s.t. Ax=b, x+f> ,

where in addition to the shift vector f > 0 there is a positive vector w = (wI, ..., wn)T

used to weight the contribution of each logarithm term. The results of Gill et al. [71 treat the

problem of determining simultaneous sequences of values of w = wk and f = fk for

k = 1,... , sothattheresultingoptimal solutions xk bo SBP(w, fk) converge to an

optimal solution x to the linear program. There are also results in [7] regarding generic

properties of SBP (w, f) and the use of Newton's method for solving SBP (w, f). The problem

Sh (e) considered in this study is recovered from SBP (w, f) by setting wk = (, ... , )T and
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byonly considering shift vectors f = it of theform fk = h, where h > 0 isgivenand

fixed, and the scalar is varied.

There are a number of advantages in using the shifted-barrier problem Sh (e) to solve

a linear program. Perhaps the most important advantage is that the algorithm presented here

can be initiated from a "warm start," i.e., a guess of a solution x to the linear program that is

perhaps not feasible for the current linear program, but perhaps is very close to the optimal

solution. This situation arises often in practice when solving a sequence of slightly-modified

versions of a given linear programming problem. In this case, the optirmal solution to a previous

version of the linear program is infeasible for the current linear program, but is very close to the

optimal solution of the current linear program. Thus, valuable information about slightly

different versions of the current linear program can be used to great advantage in solving the

current linear program, as opposed to other interior-point algorithms that must be initiated

from a "cold start."

A second advantage of the shifted-barrier algorithm presented here is that a starting

feasible solution is unnecessary, and hence there is no need for a Phase I-Phase II approach to

solving the linear program, either directly or through the addition of an artificial variable.

Most interior-point algorithms handle the Phase I-Phase II problem by introducing an

artificial row or column with large coefficients either in the objective function or in the right-

hand-side, see Anstreicher [1], Gay [6], Gonzaga [8], Steger [16], Todd and Burrell [17],

Ye and Kojima [21], Renegar [12], Vaidya [19], and Monteiro and Adler [9], among others.

In those algorithms, which use the 'big M" method of initializing the algorithm, coefficients

whose size is O(L) must be chosen (where L is the length of the binary encoding of the

linear program data), which is not usually implementable in practice. Anstreicher [2] was the

first to present a polynomial-time interior point algorithm for linear programming that

mitigates the need to modify the given linear program with an artificial row or column with

large coefficients. The shifted-barrier algorithm presented here also shares this property.

The efficiency of the shifted-barrier algorithm depends critically on three factors.

The first factor is the choice of the shift vector h . A naive approach is to choose h as the

vector of ones, i.e., h = (1, 1, 1,..., 1) . Not too surprisingly, a much better choice of h can

be determined by using knowledge of the center of the dual feasible region. In particular,

suppose (i,i) isadual feasiblesolution, i.e. A + s = c, s 0 ,and (,s) iscloseto

the center of the dual feasible. Then a judicious choice of h is h = 1 /(ns) ,

j = 1,..., n . With h chosen in this manner, the guaranteed decrease in E at each

2
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iteration, which is measured by the fraction a ,is a (1 - 1/(6 ii)) . This leads to a factor

of 6 Vii in the analysis of the number of iterations of the shifted-barrier algorithm.

If e = is a desired level of accuracy for solving the shifted-barrier problem, and

the algorithm is initiated with a value of £ = e , then the number of iterations required to

achieve e e willbe K = F6iLn((e) - In())1, if theshiftvector h ischosenas

above. Thus the second major factor affecting the efficiency of the shifted-barrier algorithm

for linear programming is the initial value of = e , which we would like to choose to be as

small as possible. In Section 4 of the paper, we show how to choose C as a function nf the

initial guess x of the optimal solution. Given the initial guess of , and also given the

choice of the shift vector h above, we present a way to efficiently choose the initial value of

= ' . Furthermore, the value of i will be roughly proportional to the degree of

infeasibility of the initial (possibly infeasible) guess x. Part of the value of £ will be

proportional to the degree of infeasibility of x in the equations Ax = b , and will be a

function of the size of the vector v = b - A x, and another part of the value of will be

proportional to the extent to which x is not nonnegative. Thus, if is almost feasible, the

initial value of £ = ' can be chosen to be quite small. Hence, the algorithm can be initiated

with a good "warm start."

Because knowing an approximate solution to the center of the dual is so important in

using a shifted-barrier algorithm for linear programming, the third critical factor affecting

the efficiency of the shifted-barrier approach is the complexity of computing an approximate

center of the dual feasible solution. Algorithms for computing an approximate center from a

known interior feasible solution are given in Vaidya [19] and in [4] . An algorithm for

computing an approximate center from a possibly infeasible dual solution is presented in this

paper in Section 5, and is a direct application of the algorithm of [4] and the parametric

center-finding algorithm of [5] . The general complexity of computing an approximate center of

the dual is analyzed in Section 5, and is based on an analysis using the two algorithms in [4]

and in [5] . Suppose that (, s) is an initial (possibly dual infeasible) guess of the center of

dual feasible region. The main result of Section 5 gives a bound on the number of iterations

needed to compute an approximate center of the dual feasible region. This bound is roughly

proportional to how far (, s) is from the center of the dual feasible region, in an appropriate

measure.

This paper is organized as follows. In Section 2, we analyze the use of Newton's

method for obtaining solutions to the shifted-barrier problem Sh () for a decreasing sequence

of values of . The main results, Theorems 2.1 and Proposition 2.2, show how the value of £
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can be decreased in conjunction with the computation of a Newton step. Section 3 applies the

results of Section 2 and contains a path-following algorithm for a shifted-barrier approach to

solving a linear progam. Section 4 presents results regarding initializing the algorithm from

knowledge of an approximate center of the dual feasible region. If an approximate center of the

dual feasible region is known, then it is shown that the shift vector h can be chosen so that

a (1 - 1/(6v-i)) at each iteration of the algorithm, yielding the desired 6 ii factor in the

algorithm's iteration count. In Theorem 4.1, it is shown that initial value of e = e canbe

chosen so that is roughly proportional to degree of infeasibility of the initial guess of

a solution. In Section 5, we present an algorithm for computing an approximate center of the

dual feasible region from an initial (possibly infeasible) dual solution (, ) . The complexity

of computing an approximate center (, i) of the dual feasible solution from the given

possibly infeasible guess (, ;) is analyzed as well.

Notation. This paper will utilize the following notation. Regarding norms, II vl will

denote the Euclidean norm of a vector v , and II 1 will denote the L - norm . The matrix

nrxm I IMI is defined as II M I = sup(IIMvII I Iv l = 1 ) . We assume throughout the
paper that the matrix A is mxn and has rank m, and that n 2 . The vector of ones is
denotedby e, namely e = (1,1,1,...,1)T . If s, z, d, y, x, h, and w are vectors,

then S, Z, D, Y, X, H, and W denote the diagonal matrixes whose diagonal entries

correspond to the vector components. Then note, for example, that II SI I = max (sj if

2. An Improvement Theorem for Shifted Barrier Functions for Linear Programming

For the given linear program (LP) and its dual (DP)

LP: minimize cTx

x

s.t. Ax=b

x>O

Xs

s.t. AT + s = c

sO 
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we propose to solve LP by introducing a shifted barrier function as follows. Let h e Rn be a

given strictly positive vector. Then for a given value of e > 0 , we relax the nonnegativity

conditionson x totheconditions x + eh 0. As > 0 isshrunkto zero,thiscondition

will in the limit be the usual nonnegativity condition x 0 . With this in mind, we propose

to solve LP by considering the following shifted barrier problem (see Polyak [11], also see

Gill et al. [71):

Sh (): minimize cTx - ln (x + e hj)
j-1

x

s.t. Ax = b

x+h > 0 -

The Karush-Kuhn-Tucker (K-K-T) conditions ensure that for a given e > 0 , that x solves

Sh(e) ifandonlyifthereexists xe R tm forwhich

Ax = b, x+eh>0, (2.1a)

j- / (xj+ehj) = (ATn, j=1,...,n. (2.1b)

Conditions (2.1) can be rewritten in the following different format:

Ax = b (2.2a)

y = x + h > 0 (2.2b)

ATx+s=c, s>0 (2.2c)

e- ()s = 0 (2.2d)

For a given value of £ > 0 , we will say that x and (c, s) are approximate solutions

to Sh (e) if x and (, s) satisfy:

Ax = b (2.3a)

y = x + h > 0 (2.3b)

AT +s=c, s>0 (2.3c)

11Ir1l< I, where r=e- Ys (2.3d)

The next proposition presents properties of a approximate solution.
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Proposition 2.1. (Properties of a Bapproximate Solution to Sh (i).) Suppose x and (r,s)

are a approximate solution to Sh () . Then

(i) Ax = b, x > -hj, j=1,...,n, i.e., x isalmostprimalfeasible.

(ii) ATr + s = c, s > O, ie., (, s) isdualfeasible.

(iii) -(|e-Hs||+) -<sj<E(+ ), j=..., n .

(iv) -r(lle-Hs|+P) xTs ne(l +P), i.e., x and s arealmostcomplementary.

Proof: (i) and (ii) follow from 2.3a, 2.3b, and 2.3c directly. Let

r = e - (1)Ys = e - Hs - ()Xs . Then 1rI p. Furthermore,expanding r yieldsfor

j=l1, ... ,n,

r= 1-hs-( ) j s.

Thus, x sj = (1- r - h sj)<S (1 - r) < (1 + )

This shows the right part of (iii). To see the left part, we have

xsj = E(1 - hjsj) - E r -e I I e -e-HsII - E Ir I -I e- Ee - HsII-

We have now shown (iii), and (iv) is an immediate consequence of (iii). ·

Note that the upper bound on the almost-complementarity condition in (iv) depends only on

n, , and . However thelowerboundalso dependson Iie-Hsll, which could

possibly be arbitrarily large. However, we will show in Section 3 that if h is chosen

judiciously, then Ie- Hsll canbeboundedby 1.5 i -. 50, and we have:

Corollary 2.1. Suppose all dual feasible solutions (, s) satisfy II e-Hs| < l5 1i-50.

Then if x and (, s) area -approximate solution to Sh (), then

IxTsl s n(1.5 in-50+ p). -

Corollary2.2. Suppose hj < 0(2L), j = 1,...,n, where L is thelengthofabinary

encoding of the data for LP . Then if x and (, s) are a f-approximate solution to

Sh (E), where E < 0(2-2) , then x canberoundedtoanoptimal solution to LP in O(n)

operations.

6
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Proof: From (i) of Proposition 2.1, x - hj > -0 (2-L), whereby x can be rounded to

feasible solution x of LP, see Papadimitriou and Steiglitz [10]. Furthermore, since

xTs < n(1 +) < 0(2-L), it is also straightforward to show that xTs S 0(2-L),

whereby x and s can be rounded to optimal pmal and dual solutions in O(3)

operations, also see [10]. ·

In Section 4, we will show that the same choice of h that yields

IIe-HsI < 15ii-.50 also yields hi 0(2), j = 1,...,n .

We are now interested in generating -approximate solutions to Sh (e) for a

sequence of values of e > 0 that converges to zero. The following Improvement Theorem

shows that if and (, s) are a -approximate solution to Sh (e), then a Newton step

will generatenewvaluesof x and (r, s) such that x and (r, s) area f-approximate

solutionto Sh((') where ' = a < (i.e., a < 1) .

Theorem 2.1 (Improvement Theorem). Suppose i and (, s) area f-approximate

solutionto Sh(e) forsome e>0 and 0< < 1 . Let

+= +1Ie- Hsll
d~ + Ile- Hsll

andlet ' =E .

Then x and (r, s) area f-approximate solution to Sh (') where x and ( s) are

defined as follows:

Let d = 'h + x

z = D[I-DAT(A 2 AT) A D](e-(ljDc)

Then x = x+z

n= (AD AT)' AD(Dc-'e)

s = c-AT . u

Noteabovethatif lie-Hsl| issmall,then a willbesmall,andso E' willbe

small relative to . Therefore, just as in Proposition 2.1, if h is chosen wisely so that

IIe-HsI| canbeboundedforall dual feasiblevaluesof s, thensocan a . Infact,wehave

7



Proposition2.2. If IIe-HII <156i-.50 and = .25, then a (1-i-- ).

Proof: From the definition of a, we have

a .25 + 15i-.50 = 1--_ .25 = 1-1 
.50 + 154i - 50 1.5 i 6 ii

Next note in the theorem that x = x + z, where z is a Newton direction for the

quadratic approximation to Sh (e'). In order to prove Theorem 2.1, we will need to prove that

d>0, that s > 0, that

y = x+e'h > 0

andthat r= e - )Ys satisfies r <

The method of proof draws on many of the constructions presented in Tseng [18], see also Roos

and Vial [13] . The proof of Theorem 2.1 will follow as a consequence of the following

sequence of lemmas.

Lemma 2.1. Under the hypothesis and notation of Theorem 2.1, d > 0

Proof: Let y=x+Eh, andlet r=e- (1Ys . Thenbecause and (;, s) area

f-approximate solution to Sh (), Ir < . We can write

r = e-Hs-(1) XS

= a(e-HS-( Xs) + (1 - a)(e- H s)

= (e-(J))+( (-a)(e-Hs)

Thus, e s < +(l-a) lie-Hill

a a

= + lle-Hsll _ le-Hill
a

+ Ile-Hill - Ile-Hll = l' <1

8



Thus 1-),sl1, Iwhereby d>0.since Sj > 0. (see23c, j=1,...,n. 

Lemma 2.2. Under the hypothesis and notation of Theorem 2.1, ID- D zl II 

Proof: DIz =[I-DAT(AD AT)- A ](e-()Dc)

-2
=[ I-DA(A D ATD1 AD](e-(1)D(AT+i))

= [I-DAT(A2D AT)-1 AD](e-()D)

the latter equality following from the fact that the matrix in brackets projects onto the null

space of D AT . Because the bracketed matrix is a projection matrix,

=I< + -a)-H s,H))Xs

<a a

where the last equality follows from the fact that i and (, ) are a approximate

solution to Sh (e), see (23b) and (23d) . We now obtain

_ 13e1-H+lle-H lle-HsIJ = v¶
aot

Lemma 2.3. Under the hypotheses and notation of Theorem 2.1, define

y -- x+Eh (2.4)

r = e - (I)Ys (2.5)

Then r = (D-1Z)e .

9



Proof: First note from the definition of

T .-- s=c-AT = E (e-Dz)

From this expression we can write

D'z = I - ( D S 

and so (DZ)= I - (2)DS (D

However, from (2.6) we also have

z = d _ (1)D2 s ,

andso ZS =DS- ()D2S2 ,

and DS2 = (DS-ZS) .

Substituting (2.8) into (2.7) gives

(D- Z) = I-(1)DS-(l)ZS -

Finally,

= e-l,)Ds-lZZs
VI 1-ii

= e-(X+ H)s- Zs = e-Hs- (Xs = r

because x = x+z and r = e-Hs-(l) Xs. .

Proof of Theorem 2.1. In order to prove the theorem, we need to show that x and (, s)

satisfy (2.3a)- (2.3d) .

(2.3a): Because Az = O, Ax = A(i+z) = A = b .

(2.3b): b -1 (x + ' h) = 5-1 ( + 'h + z) = D-l( + z) = e + 5-1z .

But I ID Z11 < < 1 fromLemma2.2, whereby D (x + ' h) = e + z > 0 .

10
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Thus x + h > , since D has positive components on the diagonal from

Lemma 2.1.

(23d): Let y and r bedefinedasin (2.4) and (25) . Wemust show that Ilrl 35 .

From Lemma 23,

lr = (ll- ( ZYeII e l[ I(D ZYel 1 II(D Z)e = II( -1( z)lf 

from Lemma 2.2.

(2.3c): From (2.4) and (2.5) we have for j=1, ..., n,

rj= -()Yjs = 1-(hj+(l)xj)sj sothat

sj (hj + )xj) = -r rj 1 - >, since rll 

However, h + (1-) xj > 0 from (2.3b), whereby sj > O , ... , n. 

3. A Path-Following Algorithm for Shifted Barrier Functions

In this section, we utilize the Improvement Theorem (Theorem 2.1) as a basis for a

path-following algorithm for linear programming using a shifted barrier function. The

problem we are interested in solving is

LP: minimize cTx

x

s.t. Ax=b

x O0

The dual of LP is

LD: maximize bTr

1r, s

AT + S = 
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We presume in this section that we are given a positive shift vector h Rn and that

we are interested in solving the problem Sh () presented in the beginning to Section 2, for a

decreasing sequence of values of > 0 that converges to zero. We suppose for the moment

that we are given an initial value of x = x' R and initial values of (, s) (i, s') such

that x' and (, s') are a f-approximate solution to Sh (e') for some given values of

e = e and of . (This assumption will be relaxed in the next two sections.) Thus the data

for the problem consists of the array (c, A, b, h, x', s, s s', ) . The following

algorithm is a sequential implementation of Theorem 2.1:

Algorithm Shifted Barrier (c, A, b, h, x', x. s e, )

0. k=0

1. X=Xk, = (, SL), = 

2. a= P+Ile-HI11 e =

'v'p +lle-H 11

3. d= h+X, z = D[-DAT(D ATADA A ](e-(L/N')D c)

4. xk+l = + z

+1= (AD2AT T D(D2A(c-Ee)

sk+1 = c_A
T

+1

ek+ = '

5. k=k+1 . Gotol.

Notice that the work per iteration of this algorithm is O (r) , which is the

complexity of solving the least squares problem in Step 3. Also notice that performance of the

algorithm hinges on being able to obtain the initial f-approximate solution x and

(7', s) . We defer discussion of this initialization issue until the next section. One measure of

performance of this algorithm is given below:

Proposition 3.1. Suppose that all dual solutions (, s) satisfy I e -Hs 1Sv i- 50, and

that = 25 . Let > 0 be a desired level of accuracy. Then algorithm Shifted Barrier

will yield a 25-approximate solution to Sh () for soe E > 0, e < £ , after at most

K = 6ii(ln () - n ()) 1 iterations.

12
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Proof: Theorem 2.1 guarantees that xk and (, sk) are a .25-approximate solution to

Sh (ek) for k=1,.... From Proposition 2.2, (1 - I1) at each iteration.

Let K 60i(ln(e)-In(c ))l. Then (1A_, C, whereby

In(eK)-In (C ) r K In (1 - -1iZ) < -KY/(6,ii) • In( )I ()

from which we obtain In () < In ( ), i.e, 5 e . [

Corollary 3.1. Suppose that in addition to the conditions opf Proposition 3.1, that

hj < 0(2 L ) , j = 1,...,n . Then algorithm Shifted Barrier will generate a solution that can

be rounded to an optimal solution to LP after at most

K = r 6i(() ln(O n (L)) iterations .

Proof: The proof is an immediate consequence of Proposition 3.1 and Corollary 2.2, with

£ = o(2- ZL). *

In light of Proposition 3.1, the efficiency of the algorithm will depend on the choice of

the shift vector h, and we seek a value of h that will ensure that IIe-Hsll issmallfor

any dual feasible solution (, s) . The efficiency of the algorithm will also depend on the

initial value , and we seek to keep ' as small as possible. Thus we seek values of

x = x' and ( s) = (, s) so that x and (, s') are a 25-approximate solution to

Sh ('), where > 0 is preferably a small number. In Sections 4 and 5, we will examine

ways to choose h and x, (, s ), and in an efficient manner.

4. Efficient Choice of the Shift Vector h and the Initial Values x'. , si). and F'

In this section, we present a method for choosing the shift vector h and the initial

values x , (, s'), and . We will show that if this method is used for choosing h,

then Ile-HsI 15 i-.5 foralldualfeasiblesolutions (, s), thus establishing the

efficiency of the Shifted Barrier algorithm in terms of the geometric reduction constant a

(See Proposition 22 and Proposition 3.1). We will also show that if x is a guess of a feasible

or optimal solution to LP, then the initial values x, (, s), and canbe chosen so

that roughly measures the degree to which x is infeasible, and thus ' will be a small

numberif x is almost feasible.
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Before we present the results, we need to examine some concepts related to the center of

the dual feasible region. Suppose that the feasible region of the dual LD is bounded. (CTis

supposition will be relaxed in Section 5). The center of the dual feasible region is that value of

(,i, ) = (;, ) that solves the logarithmic barrier problem:

maximize ~ In(sj)

Sc s

s.t. AT+s= c

s>O

see Sonnevend [14, 15], also Vaidya [19], and [4]. If the feasible region of the dual LD is

bounded and has an interior, the center (, ;) will exist uniquely. We are interested in

working with a dual feasible solution (, s) that is close to the center (, ) of the dual

feasible region in an appropriate measure of closeness. One measure of closeness is the length

of the gradient of the negative logarithm barrier function

f ()= - in(q - (AT ) j)
j-1

Wenotethat Vf() =AS e (where s = c-A T ) and that the Hessionof f( is

V2 f( )= A S AT . We will say that (, ) is a r-approximate center of the dual

feasible region if , s) is dual feasible and s >0 and

Vf()T(V f )-1 Vf( = VeT AT(AS 2 AT) --

Thus , s) is a -approximate center if the norm of the gradient of f (7 is less than or

equal to , where the norm is measured using the inverse of the Hessian of f (t) at = .

The next Lemma relates the notion of a -approximate center to a more standard measure of

the distance of (, s) to the center (, ) . We say that a dual feasible solution (, s) is

8-dose tothecenter (, Z) ofthedualfeasibleregionif s > O and Is- (s-s)l < .

Lmmana 4.1 (see 41 . Lemma 7.2). Suppose , ;) is the center of the dual feasible region and

that {(, s) isa r-approximate center of the dual feasible region, for J .08 . Then

(, s) is 86-close tothecenter (, s) for = i.e.55 , i.'e-, Is (s-s)11 < f5 

14
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The proof of this Lemma is given in the Appendix. The complexity of computing a

xr-approximate center for = .08 is analyzed in Section 5. The following result is a partial

converse of Lemma 4.1, and is also proved in the Appendix.

Lena 4.Z Suppose (, s) is the center of the dual feasible region and that (;, i) is

8-close tothecenterfor 6 < 1/21. Then (, s) isa r-approximate centerfor

.075 .

We now turn our attention to the problem of choosing the shift vector h . An efficient

choice of h is given in the following Lemma.

Lemma 43 (Choice of a shift vector h ). Let (~, s) be -close to the center of the dual

feasible region, where = 1/21 . Let h = ()e Then for all dual feasible values of

(c, s), Ile-Hsll < 15,fi-5 .

Proof: Let (, s) be the center of the dual feasible region and let (X, s) be any dual

feasible solution. Then from properties of the center (see Sonnevend [14, 15], also [3],

Theorem2.1), S(s-s)l < in(n-) . Also fromthehypoth esisof theLemmm a,

s - ll < 6, where 6=1/21. Thus

Therefore II (s-l )I l ls 1 (s-)ll + -sl l (1+6) n(n-1) + 6 

Let h (i)S-e . Then Ie-Hs = Ile- ( S sII

n -- n-= (1)- -'(s-s)+ ( - )ell < 1 (s-s)| + l1ell n-1

< (1)(l+8) fn(n-1)+ + i nI) = (22) V n - + 1 +n-1

< 1.5 i -5 for n 2 .

Corollary4.1. With h chosenasinLemma4.3, hj < 0(2L), j= 1,...,n.

Proof: For each j = 1,...,n, let Mj = maximum si

st ATx + s = 

s >0 O.

15



Then because the dual feasible region is bounded and has an interior (otherwise the center

(3 ) wouldnotexist), Mj isfinite,and also 2-L 5 Mi < 2 L, seePapadimitrou and
Steiglitz [10]. Furthermore, from properties of the center, we must have sj (- M , see

Sonnevend[14,15],also[3]. Nowlet h= (I) e, where () is -dose tothecenter

(s~) for 8 = 1/21 w Then l. (s s) l 1/21 implies

Si 22 22 nn-', . Thus

h j (2)( n ) ) < (221(2L) = 0 (2 L), j = 1 n.
nsj t2ln 21'

From Lemma 4.3, we obtain the iteration bound of Corollary 3.1 for processing a linear

program with algorithm Shifted Barrier.

In Section 5, we will analyze the complexity of computing h = ()S'e efficiently

(which is the complexity of computing a solution that is 8 - close to the center of the dual

feasible region).

We now turn our attention to choosing initial values of x = x' , ( s) = (, s'), and e = E.

We assume that we have a guess of a good value of x, which we denote by x = E Rn . The

choice of can be arbitrary, and in fact we need neither A = b nor x > 0 . A good choice of

x may be a feasible or optimal solution to a previous version of the linear program, that is

(possibly) infeasible for the current version of the linear program. Once again, we assume that we

have at hand a dual feasible solution (, s) such that ( s) is a 8- close center for the dual

feasible region for = 1/21 . We nowuse (, ) and to define the initial values of algorithm

Shifted Barrier as follows:

s' =s (4.1a)

(4.1b)

* 811Sx - S-AT(ASAT)(AZ-b)1 (4.lc)

X = S-2 AT(AS-2 AT)- b + S-1[I S-I AT(AS-2AT) AS-](e(1 )e +S (4.1d)

We will prove below that these initial values are a .25-approximate solution to Sh (e) .

Note that in terms of efficiency of the Shifted Barrier algorithm, that the value of e is very

important, and it should ideally be a small number. From (4.1c), we note that

16
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-811 11 +8 (A8 )- (A-b)
= 8sl + 8 V\(Ax-b) (AS A^) (Ax-b)

In the above expression, is bounded above by two quantities which indicate how far away

x' is from being feasible. The second quantity is a measure of the distance from A ; to b

and measures the infeasibilities of in terms of the equations A x = b in the matrix norm

(A S AT)- . The first quantity measures the length of ; scaled by S . Note that the

morenegativeacomponent x is, the larger the value of II Sxl is. Roughlyspeaking,the

boundon ie decreasesthecloser liestotheregion (x I Ax=b) andtotheregion
(X I X 0 .

Theorem 4.1 (Initial Value Theorem). Suppose is a guess of the value of a feasible

solution to the primal LP. If (~ s) isa 8 - close centerof thedual feasible region for

6 =- 1/21, and (, s) , x', and e aredefined as in (4.1a)-(4.1d), then x' and (, s')

area f-approximate solutionto S h (), where = .25 and h= (1)S e

Proof: We must verify conditions (23a) - (2.3d) for the quantities e, x' ,and (, s') .

(2.3a): Direct multiplication of (4.1d) yields Ax' =-- b .

(2.3c): Because (I s) is 8- close to the center of the dual feasible region, ATe;+ s = c
and >0. Thus AT +s = c and s >O .

(2.3d): Let = x+eh and r = e -( (Y')s' = e - Hs - X s . Substituting

h = () e andthevaluesof s' and x from(4.1)yields

r =e- ( -) - ( -1 AT(A-2 AT AT) b ( e (1 ( ))e + S)

+ () AT (A -2 AT)AS' ( (1-)e + :)

= _ (1s- AT(AS AT)- (b-Ax') - () + (1-) S' ATA- AT) AS- e .

17



Thus

Ir"II t) IS AT(AS AT) (A-b)-SI + IS-1AT(A-2A)-1AS- e

) + AeT e AT(A 2ATf) A - '

However, from Lemma 4.2, (. s) is a -approximate center of the dual feasible region, for

c= 075 . Thus this last expression becomes

tll I + 075 < .25
8

(2.3b): Let Y=* x + h . Because r = e- ()(Y is and iril< .25 , we have

r = -yi s;/ ,or y = (I-rj) e/ss, j=1,...,n . Now s > 0, > 0 and

r < Irll .25 , whereby y; > 0, jl,...,n. .

In conclusion, Lemmas 4.2, 43, and Theorem 4.1 point out the fact that having a

8- close center C, s) of the dual feasible region provides us with an efficient choice of the

shift vector h = e as well as efficient initial values of x , (, s), and for

initiating the Shifted Barrier algorithm of Section 3. Lemma 42 relates the value of 8 1
21

to the value of · < .075 . Lemma 43 states that if h = S e , then all dual feasible

points (, s) satisfy II e- HsII • 15 i- 50, whereby from Proposition 2.2, a 1- 6 in

at each iteration of the algorithm, yielding the complexity measure of the algorithm that is

presented in Proposition 3.1. Finally, Theorem 4.1 shows that if ( s) is a 8- close center,

then the algorithm can be initiated with values of x', (, s'), and e' given in (4.1) and

that the value of e' roughly reflects the degree of infeasibility of the given vector x in

terms of the satisfiability of the equations Ax = b as well as the nonnegativity conditions

x > 0 . In this next section, we present a method for computing a 8 - close center ( s) of

the dual feasible region for 8 < 1 and the complexity of this method is analyzed as well.
21
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5. Analysis of a Method for Finding a fi - clns Center , ;) of the Dual Feasible Region for < 1/21.

This section analyzes the use of two algorithms that can be used together to find a

8 - close center of the dual feasible region, namely

Y = ((,s)ERm x Rn I AT + = , s > O).

In the previous section, we assumed Y was bounded. However, there is no loss of generality

in assuming the boundedness of Y so long as we are given a bound B on the optimal objective

value of LP . (In practice, such a bound is usually easy to obtain based on a good

understanding of the problem at hand.) Then we can replace LP and LD by the problems:

LP': minimize cT x - B xn+l

x, Xn+l

Ax - bxn+l = b

x 0, xn+l 0

LD': maximize bT t

X S, Sn+l

AT + S = C

- bTr + Sn+l = -B

s 0, sn+ 2 0

The following Lemma shows the equivalence of LP to LP' as well as the boundedness of

LD'.

Lemma 5.1 (Equivalency of LP to LP' andBoundednessof LD'). Supposethatthe setof

optimal solutions to LP is nonempty and bounded, and that B is a strict lower bound on the

optimal objectivevalue z' of LP. Let n+ = z - B.

(i) (i, n+l) = (i, 0) and (i, , Sn+i) are a pair of optimal primal-dual

solutions to LP' and LD' if and only if x and (, s) are a pair of

optimal primal-dual solutions to LP and LD .

(ii) The feasible region of LD' is bounded. Furthermore, there exists a feasible

solution (,s, Sn+l) of LD' with s > 0 and Sn+l > 0 .
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Proof: (i) Because B isstrict lowerbound on theoptimal objectivevalue z' of LP,

the last constraint of LD' will never be binding in an optimal solution to

LD', i.e., bTc > B inanyoptimalsolution (, s, Sn+l) to LY . Thus

Sn+ > 0 and xn+ = 0 (from complementarity) in any optimal solution to

LP . The rest of the assertion follows in a straightforward manner.

(ii) By hypothesis, the set of optimal solutions to LP is nonempty and bounded.

Hence, by a theorem of the alternative, it is straightforward to show that

there exists ir1 for which AT < c and that the feasible region of LD'

is bounded. Furthermore, since B is a strict lower bound on the optimal

objective value of LD (and hence LD' , from(i)) ,there exists Xr2 for

which ATir2 c and bT r 2 > B . By taking the appropriate convex

combination of 7t1 and 2 , we obtain a vector xt for which ATr < c and

bT > B. U

With Lemma 5.1 in mind, we now assume throughout this section that the feasible

region of LD is bounded and has an interior, i.e., there exists a point (, s) for which

AT + s = c and s > 0. Therefore,thecenter (rt, ) of thedual feasibleregionexists

uniquely, and we can now concentrate on finding a 6 - close center of the dual feasible region.

As in the case of analysis of the primal, we suppose that we have a guess xr of the value of

x, and that will be the starting point of a method for finding a - close center. We do

not assume that AT i < c, i.e., that is feasible for the dual. We will make use of two

different center-finding algorithms. Each is described below.

Algorithm PT

The first algorithm we will utilize is a projective transformation-based algorithm for

computing an approximation to the center of a given system of linear inequalities AT xI < g

starting from a given initial interior solution to that system. The algorithm is described and

analyzed in [4] . We will call this algorithm PT for "projective transformation"

algorithm. At each iteration, algorithm PT performs a projective transformation, and then

computes a direction d from the current feasible solution by solving a system of equations

corresponding to a least-squares problem. (Thus the work per iteration is O(n) operations.)

A steplength a is then computed, either by an analytic formula (much as in Karmarkar's

algorithm), or by performing a line-search. The new iterate is it +- + ad . Performance

of the algorithm can be measured by considering the difference in the logarithmic barrier

function

20
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f(iC) = ln(gj - (ATir)j)

at the starting point ir = cx and at the center x , as follows:

Lemma 5.2 (Complexity of Algorithm PT ). Suppose satisfies s = g- AT > 0, and

that algorithm PT is initiated at r = . Suppose (, ) is the center of the system

AT < g. Thenalgorithm PT will computea 8-close center (, ) ofthesystem

ATn g afteratmost K = 7 + (n-'1) f0f1 iterations, where 8 = 1, and
V -n/ .33uu 21

the work per iteration is at most 0 (n) operations (i.e., the complexity of computing the

direction). U

Note that the number of iterations is bounded by 7 + (f (r) - f ()/.0033 which is

independent of n, the number of inequalities. This bound indicates that if f is large,

i.e., f is close to f (r) , then the number of iterations will be small. Thus the bound on

the number of iterations is roughly proportional to how close is to r in the measure of the

logarithmic barrier objective function f (r) . It should be noted that the bound above is

probably not very tight in practice so long as the projective transformation algorithm is

implemented with a line search. In that case, the author's own experience on small problems

indicates that the algorithm converges to the center at least as efficiently as Karmarkar's

algorithm converges to solutions of a linear program. C(his is not surprising, because both

algorithms are based on the same projective transformation methodology and strategy, see

[4] .) The proof of Lemma 52 is given in the Appendix.

Algorithm PCP

The second algorithm we will utilize is a path-following algorithm for tracing the

path of centers (, St) to the system A T r < (g + dt) as the scalar parameter t is varied

over a given range. The algorithm is described in [5] . We will call this algorithm PCP

for"parametric center problem." At a given iteration k, the value of t is t = t . The

currentpoint (, -k) isa 8-close centerofthesystem AT < g + dtk for

8 = 1 . A constant a is computed, which is the increase in the value of t, and the new
21

value of t is computed as t + = tk + a . A Newton step is then computed and a new value

of it ischosen,namely tkl, whose slacks are sk+, = g +dt k+ - A tk+ . The new

21



value (+l, 'tk+') isa 8-close centerofthesystem AT 5 g + dt +l ,for =- .
21

The work per iteration of the algorithm is O (r 3) . Performance of algorithm PCP is

measured as follows:

Lemma 5.3 (Complexity of Algorithm PCP ). Suppose (, s) is a 8- close center of the

system ATr < g + dt for 6 1 at t = O. Supposethat d < O, and define
21

TMAx = maximum t

R,t

st. A < g + dt .

Suppose TMAX > 1 .

Then after atmost K = r128nIn(TMA)1 iterations of algorithm PCP, the

algorithmwill compute of 8- close centerofthesystem AT c < g + dt for 8 = 1., at
21

t=l. I

Note that the value of K increases linearly with n . The following discussion is

aninterpretationof K . Because (n, ) isa 8- dose centerofthesystem AT I g

thentheset Yo = (Re R' I ATlc • g) isbounded. As t isincreased,

Yt = ( IeR AT < g + dt) shrinks,because d < O0 andthe RHS isstrictly

decreasing, i.e., Yt c Yt for t > t. Furthermore, TMAx is guaranteed to be finite. The

quantity In (TAX 1) measures howclose theset Y1 (i.e., Yt at t = 1) is to the set

Yo. If TMAx islarge,increasing t from t = 0 to t = 1 willnotcontracttheboundary

of Yt very much on a relative basis. Thus Yo and Y are shaped similarly, and so their

centers should be near to one another. Because TMAX is large, InT will be small.

Conversely,if TMAX issmall, (e.g.,if TMA = 1 + E forsomesmall e ), then Y1 willbe

a substantial contraction of Yo, and the centers of Yo and Y1 may be very far from one

22
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another. Because TX s small, In - it (I = In (l+) willbelarge.
TMA - 1

The proof of Lemma 5.3 is given in the Appendix.

We now are ready to present the method for finding a 8- dose cerder (, ) of the

dual feasible region from a given starting point Suppose (r, s) is the center of the dual

feasible region. As in the case of Section 4 for the primal, we assume that we have a given

initial value of xi = that is a guess of the value of . If is dual feasible and

ATE < c wecanusealgorithm PT tofindadualfeasiblepoint (,s) thatisa 6- dose

center of the dual feasible region in K = 7 + f r) -() 1 iterations, where

f(n) = ln(cj - (ATlr)i), accordingto Lemma5.2,where 8 = 1
j,1 21

Suppose, however, that does not satisfy AT < c. Then the strategy we

propose is to replace the RHS c by a vector g for which A < g . We can then use

algorithm PT tofindapoint (r, s) nearthecenter ofthesystem AT r < g, and then

use algorithm PCP to trace a sequence of points near the center of the system

AT r 5 g + t(c-g) as t isincreasedfrom t = 0 to t = 1 . At the final iterate, we

will have a point (, s) that is near the center of the system AT < g + 1 (c - g) = c

The method is as follows:

Step 1. Let g E Rn beanyvectorthatsatisfies g > c and g > A T , forexample

gj = max c j + 1,(A T r)j + 1, j=l,...,n.

Step2. Usealgorithm PT tofinda 6-close center .) ofthesystem AT g,

for = 1.
21

Step 3. Define d = c - g. Usealgorithm PCP togenerateasequenceof - close

centerpoints of the system ATrt < g + dt for t E [O, 1], for = 1 .
21

At the final iterate, we will have a point (i, s) that is a - close center of the

system ATr < g + dt at t = 1, i.e. AT g + (c -g) = c,andso (i, ) will bea

23



- close center of the dual feasible region for 8 = 1 . The complexity of the above method
21

is as follows, whose proof is an immediate consequence of Lemmas 5.2 and 53.

Lemma 5.4 (Complexity of computing a - dclose center). Using the above method for

computing a - close center of the dual feasible region for 8 1 , the total number of
21

iterations is bounded above by K = K + K2 , where

(i) K0 = F 0J33

where (, s) isthecenterofsystem AT < g, and

iln

2 F e 128 n lTMA where

KM=1T=nxi; , t
7C, t

AT < g + dt. 

Note that in the above method, the choice of g is fairly arbitrary.

As was discussed in this section, the value of K roughly measures how close iC is to

the center of the system ATr < g , and the value of K2 roughly measures how close the

center of the system AT I g is to the center of the system ATlr < c . Thus

K = K + K2 roughly measures-howclose n istothecenterofthesystem ATr < c .

Through Lemma 5.4, we have a method that will compute of 8 - close center (for

8 = 1 ) of the dual feasible region, from any starting point, and whose complexity roughly
21

corresponds to how close the starting point is to the actual center of dual feasible region.
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Appendix

The purpose of this Appendix is to prove Lemmas 4.1 and 42, and Lemmas 5.2 and 53.

The results in these four Lemmas are slight modifications of results contained in the papers [41

and [5], but with different notation. Thus, none of these results in the Appendix are truly new

to this paper. There is a problem, however, in proving these Lemmas in a brief yet cogent

manner, because the notation in the papers [4] and [5] vary substantially from that of this

paper. Therefore, we begin with a discussion of notatiorna issues.

We first start with the algorithm PT presented in paper [4] -. In Section 2 of that

paper, an algorithm is presented for solving the following center problem

maximize F(x) = wiln(b-Ax)
i-l

x

subject to Ax < b

Mx = g

where A is an mxn matrix, and where w - (wl, ... , wmT is a vector of positive weights

that satisfy eTw = 1 . Adapting this problem to the problem of finding the center of dual

feasible region presented in Sections 4 and 5 of this study, we replace A by AT , b by c,

and interchangetherolesof m and n, replace x by nx, delete M and g, set

w =(l/n)e and

note that F (x) = (L) ln (bi - A x), which in the notation of this paper is

F(x) = () f(n) = (l) ln (cj -(AT )j) . Therefore, when citing results from [4] about
j-1

F(x), we can replace F(x) by () f() . Two other key notational points in the algorithm

are the definition in [4] of w = min w, n the notation of this paper, and

k = /(l- = l/(n _ 1) in the notation of this paper. Performance and analysis of the

algorithm PT in [4] frequently makes use of the quantity IY which is a constant defined in
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Step 3 and Step 4 of the algorithm PT in [4] . As it turns out, the constant is intimately

related to the value of r defined in Section 4 of this paper, as follows:

Proposition A.1 (Values of and ). Let (i, s) be a dual feasible solution that satisfies

i-Is > , andlet f ) = ln (cj -(ATx)J). let bethequantityj-1

( Vf(C))(V f( )) Vf(C) = VeTS AT(AS AT) ASe

If isaniterateof the algorithm PT presented in [4], let Y be the valuedefined in

Step3and4 ofthealgorithmfor = X . Then

Proof: In the notation of this study, at Step 3 of the algorithm PT (see [4]) , we must solve

maximize - yTd

d

s.t. d(A- yT)(s-'W-)(AT - syT)d k ,

where = c-ATt and y = (1)AS e. Let Q = A -W AT and

Q = Q - yyT, andnotethat k = V(n-l), w = (/n)e ,and W = (1/nI 

Then direct substitution shows the above problem is

maximize - yTd

d

s.t. dTQd < k,

A-2
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-- 1

andtheoptimalvalueof d is d = .

yi QY

y = ( -YT /k = fyT ' Y . Nextnote that because Q is a rank-one modification of

Q , then from the Sherman-Morrison formula,

Q-1 Q- + Q yTQ- 

I - yTQ-y

andso = YTQ-Yk
- yTQ-1y

However Q = AS W AT = (1) A AT =nn

and y (n) AS-1nn
e = (1) V f (),andso

yTQ y = ()Vf() v �f) ()f() Vf ) =

remembering that

L_2
n Substituting this last expression and

k = 1/(n-_) yields

1 - i 2
n

.Y= n-nl. i

We also need to translate some notation from the paper [5] . In that paper, if

> 0, the quantity IvlIQ() = IIvTATS -2 AvII isdefined. Inour

notation, thisis Iv I Q(C) = IvT A AT vll

Ax + = b ,

where s = c-AT .

A-3
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Proof of Lemma 4.1: The proof is based on Lemma 33 of [51] . Suppose (, s) isa

r-approximate center where = .08. Then y < r < .08 from Proposition A.1. Let

h = .5 . Then in the terminology of Lemma 3.3 of [5] ,

I (n - 1) -(1 h) T55

where 11'--;IQQ isdefinedtobe /(X-X) iA~AS A (tax- =-lS-(S- s)[. Thus

-t=- A AT( i) - -)I< .5 .

Proof of Lemma 4.2: The proof is based on Lemma 3.4 of [5] . Suppose (, s) is a -close

centerand 6 = 1. Then II - j Q _< 1 . Thusfrom Lemma3.4of [5], with
21 21

2
a =

2(1 - )(1- 2) , weobtain y ; 1)527 . ButfromPropositionA.1, s 5 fy, so

y .075. U

Towards proof of Lemma 5.1, we have the following two Propositions.

Proposition A.2: If g is the current iterate of the algorithm PT and the value of Y is

computed and y = y < .08567, then in all subsequent iterations, we will have the value of

y < .08567 .

Proof: This proof is based on Lemmas 4.1 and 4.2 of

iterates of the algorithm PT, andlet and let and

at Steps 3 and 4 in those iterations. Suppose y <

Lemma4.1(ii)of [4] , f(;) < f(i)+ 69(k) y .

[4] . Let z and i be two successive

be the corresponding values of i produced

.08567 but Y > .08567. Then from

On the other hand, from Lemma 4.2(ii) of [4] ,

f() > f(i) + .4612(kn) 2

A-4
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and from Lemma 4.2(i) of [4] ,

f x) f(x) + J33(kn) .

Combining these yields

(kn) .669 2 2 fG) - f) = f) - f(x + f(- f-

> .0033 (kn) + A612(kn) 2

Thus 2 .0033 , or y > .125 , acontradiction.
.669 - .4612

y < .08567.

Thus if y .08567, then

.

Provosition A.3: Under the hypothesis of Proposition A.2,

Y= 68 .

Proof: We have from Lemma 4.1(ii) and Lemma 4.2(ii) of [4] ,

(kn) .4612 2 f( - f() = f() - f () - (f( - f ( )

S .669(kn) 2 - A612 (kn)y2

Thus -~2 .669 - .4612 -2 sothat
.4612

Y 68 y . .

Proposition A.2 states that once Y drops below y = .08567 in algorithm PT , then it

decreases at least by a factor of .68 at all subsequent iterations.

Proof of Lemma 5.2: From Remark 7.2 of [4] , algorithm PT must have y < .08567 after

at most r( ) (f(; -)f(-) iterations, i.e., after atmost (n- 1 (f) 0(33
n .0033 -n- .0033

A-5
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iterations. Then after at most seven additional iterations, Proposition A.3 ensures that at the

current iterate, y (.68)7(.08567) < .0058. ThenfromLemma3.3 of [5] with h = .03,

we obtain

= V(rc-rc) T AS AT (;- ) = I- {IIQ(-) _121

i.e., (, ) isa &close centefor 6 = 1. U
21

Proof of Lemma 5.3: The proof of Lemma 5.3 is an application of Lemma 2.5 of [5] . At each

iterate of algorithm PCP , the algorithm computes either a finite upper bound on TMA at

Step 4, or a finite lower bound on TN at Step 4, or both, where

TMIN = munimum t
I, s,t

s.t. AT + s = g + dt

s>0

However,if d < 0, TM = -oC, and so wecan apply Lemma 2.5 of [5] with

te[t,t] = [0, 1] ,i.e., t = O and t = 1 . Thus the algorithm will stop after at most

K = r nn (TMAX/(T M - 1)) iterations. ·

A-6
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