
A POTENTIAL REDUCTION ALGORITHM
WITH USER-SPECIFIED PHASE I - PHASE

II BALANCE, FOR SOLVING A LINEAR
PROGRAM FROM AN INFEASIBLE WARM

START

Robert M. Freund*

OR 260-91 October 1991

*Visiting Cornell from Sloan School of Management, MIT, Cambridge, MA 02139.
Research supported in part by NSF, AFOSR, and ONR through NSF grant DMS-
8920550

Abstract:

This paper develops a potential reduction algorithm for solving a linear-programming problem

directly from a "warm start" initial point that is neither feasible nor optimal. The algorithm is of an

"interior point" variety that seeks to reduce a single potential function which simultaneously coerces

feasibility improvement (Phase I) and objective value improvement (Phase II). The key feature of the

algorithm is the ability to specify beforehand the desired balance between infeasibility and

nonoptimality in the following sense. Given a prespecified balancing parameter /3 > 0, the algorithm

maintains the following Phase I - Phase II "/3-balancing constraint" throughout:

(cTx- Z*) < /3TX,

where cTx is the objective function, z* is the (unknown) optimal objective value of the linear

program, and Tx measures the infeasibility of the current iterate x. This balancing constraint can

be used to either emphasize rapid attainment of feasibility (set large) at the possible expense of

good objective function values or to emphasize rapid attainment of good objective values (set /3

small) at the possible expense of a lower infeasibility gap. The algorithm exhibits the following

advantageous features: (i) the iterate solutions monotonically decrease the infeasibility measure, (ii) the

iterate solutions satisy the /3-balancing constraint, (iii) the iterate solutions achieve constant

improvement in both Phase I and Phase II in O(n) iterations, (iv) there is always a possibility of

finite termination of the Phase I problem, and (v) the algorithm is amenable to acceleration via line-

search of the potential function.

Key words: Linear program, potential function, interior-point algorithm, polynomial-time complexity.

Running Header: balanced "warm start" algorithm for LP

1. Introduction

This paper is concerned with the problem of solving a linear programming problem directly

from an infeasible "warm start" solution that is hopefully close to both feasibility and to optimality.

Quite often in the practice of using a linear programming model, a practitioner needs to solve many

slightly-altered versions of the same base case model. It makes sense in this scenario that the optimal

solution (or optimal basis) of a previous version of the linear programming model ought to serve as an

excellent "warm start" starting point for the current version of the model, if the two versions of the

model are similar. Experience with the simplex method over the years has borne this out to be true in

practice; the optimal basis for a previous version of the model usually serves as an excellent starting

basis for the next version of the model, even when this basis is infeasible. Intuitively, a good "warm

start" infeasible solution (that is not very infeasible and whose objective value is not far from

optimality) should give an algorithm valuable information and should be a good starting point for an

algorithm that will solve the linear programming model to feasibility and optimality. In spite of the

succcess of "warm start" solutions in solving linear programming problems efficiently with the simplex

method, there is no underlying complexity analysis that guarantees faster running times for such

starting solutions. This is due to the inevitable combinatorial aspects of the simplex method itself.

In the case interior point algorithms for linear programming, the research on algorithms for

solving a linear programming directly from an infeasible "warm start" are part of the research on

combined Phase I - Phase II methods for linear programming. The underlying strategy in a combined

Phase I - Phase II algorithm is to simultaneously work on the Phase I problem (to attain feasibility)

and the Phase II problem (to attain optimality). The starting point for such an algorithm then need

not be feasible, and a "warm start" starting point again should serve as an excellent starting point for

a combined Phase I - Phase II algorithm. Perhaps the first interior-point combined Phase I - Phase II

algorithm is de Gellinck and Vial [9]. Anstreicher [1] also contributed to the early literature in this

area, see also Todd [15] and Todd and Wang [16]. These approaches all used the strategy of potential

reduction and projective transformations, as originally developed by Karmarkar [12]. Other approaches

to the problem using trajectories of optimal solutions to parametric families of shifted barrier problems

_ I s �__1 1�__1�1 __1--11-^�_11_1·.

2

were studied by Gill et. al. [10], [7], and Polyak [13]. Later, after direct potential reduction methods

were developed by Gonzaga [11], Ye [20], and [6], these methods were extended to the combined

Phase I - Phase II problem, see [8], Anstreicher [2], and Todd [17].

While all of these algorithms simultaneously solve the Phase I and Phase II problems, they are

all interior point algorithms and so they are only guaranteed to converge to a solution. The algorithm

is terminated in theory after the appropriate gap (feasibility gap for Phase I, duality gap for Phase II)

is less than 2
- L , where L is the bitsize representation of the problem data, and is terminated in practice

when this gap is less than some presecribed small number, e.g., 10- 6

The formulation of the Phase I - Phase II problem that has been developed by Anstreicher [1,2]

is to solve the linear program:

minimize c x

s.t. Ax = b

(TX = 0

x > 0,

where we are given an infeasible "warm start" vector x0 that is feasible for the following Phase I

problem:

minimize Tx

s.t. Ax = b

(TX >

Tx > 0O

and has the Phase I objective value (TxO > 0 . If z* is the optimal value of LP, then cTx - z*

measures the optimal value g, and Tx measures the feasibility gat.

3

The Balance of Priorities between Phase I and Phase II. One might think that in solving any linear

programming problem, that both Phase I and Phase II are equally important: for surely, without

feasibility, the problem is not solved, and without optimality, the problem is not optimized. However,

in practice, there are many instances where this simple logic breaks down, and that different problems

naturally lend themselves to very different ways of prioritizing the balance between improving the

Phase I objective, i.e., reducing the feasibility gap, and improving the Phase II objective, i.e.,

improving the optimal value gap. Consider the following list of instances:

(i) In some practical modelling problems, the constraints of the problem are specified easily,

but the objective function is not so easy to specify. This may be because of accounting criteria and the

problem of ascertaining the true "variable cost" of the activities. Or it may be because it is not clear

just what the actual objective is in the practical problem. In these problems, attaining feasibility is

important, but attaining exact optimality is not so important, because of a lack of confidence that the

linear programming objective function is a good representation of the true objective of the underlying

practical problem.

(ii) There are instances of practical situations where the user is primarily interested in

obtaining a feasible solution, and the objective function is not very important. In these instances,

much more priority should be given to Phase I than to Phase II.

(iii) In other practical modelling problems, a feasible solution that is not optimal may be of

no use at all. This type of situation arises frequently when using linear programming to solve partial

equilibrium economic models, see, e.g., Wagner [19]. In these models, feasibility may be easy to attain,

but the partial equilibrium solution is obtained by looking at both the primal and the prices that arise

as the solution to the dual problem. A nonoptimal primal feasible solution conveys virtually no

information about the underlying economic model. In this application of linear programming, Phase II

should achieve a much higher priority than it would in instances (i) or (ii) above.

(iv) In using linear programming in branch and bound routines for solving mixed-integer

programming problems, a sequence of linear programs is generated and solved as the branch and bound

4

routine runs its course. When solving a particular one of these linear programs, we may only be

interested in looking at the bounds generated by the algorithm. In this case, attaining a feasible

solution may be completely unnecessary, and it may suffice to generate a bound that is sufficiently

positive to signal that the branch of the underlying tree should be pruned. In this case, attaining

feasibility may be unimportant, and should receive much less priority than it would in instances (i) and

(ii) above.

These instances suggest that an algorithm for the combined Phase I - Phase II problem should

have as a parameter some measure of the relative importance or "balance" between the goals of

reducing the feasibility gap (Phase I) and reducing the optimal value gap (Phase II) in solving a given

linear programming problem. In this paper, we propose a measure of this balance concept, a parameter

for setting this measure for a particular problem, and a polynomial-time algorithm for solving the

linear programming problem from an infeasible "warm start" that incorporates this measure and

parameter into the algorithm. The notion that we develop herein is denoted as "/3-balancing" and is

developed as follows.

Let /3 be a positive scalar constant that is specified by the user, called the "balancing

parameter." Given the prespecified balancing parameter /3 > 0, the algorithm maintains the following

Phase I -Phase II ",3-balancing constraint" throughout:

(CTX Z*) < eTX, (1.1)

where cx is the objective function, z* is the (unknown) optimal objective value of the linear

program, and 'Tx measures the infeasibility of the current iterate x . The left side of (1.1) is the

optimal value gap, and the right side is times the feasibility gap. Thus (1.1) states that the

optimal value gap must be less than or equal to /3 times the feasibility gap.

If is set to be very large, then (1.1) does not coerce a very tight optimal value gap. And so

even when the feasibility gap is small, the optimal value gap can still be quite large (although when the

5

feasibility is zero, clearly from (1.1) the optimal value gap must also be zero.) Thus the larger the

value of 3 , the more Phase II is de-emphasized, i.e., the more Phase I is emphasized.

If /3 is set to be very small, then (1.1) coerces a very tight (or negative) optimal value gap as

the feasibility gap is narrowed to zero. And so even for a relatively large infeasibility gap, the optimal

value gap must be small (or even negative) in order to satisfy (1.1). Thus the smaller the value of /,

the more Phase II is emphasized in the algorithm.

The algorithm developed in this paper also has the following other desirable features: (i) the

iterate solutions monotonically decrease the infeasibility gap, (ii) the iterate solutions satisfy the

P-balancing constraint (1.1), (iii) the iterate solutions achieve constant improvement in both Phase I

and Phase II in O(n) iterations, (iv) there is a possibility of finite termination of the Phase I problem

(whether or not the objective values are superoptimal), and (v) the algorithm is amenable to

acceleration via line-search of the potential function.

The paper is organized as follows. In Section 2, the notation used in the paper is presented,

the formulation of the "warm start" problem is presented, and the 3-balancing constraint is developed

and discussed further. Also, we show how to convert any linear programming problem with an

infeasible "warm start" and an initial objective function lower bound into the standard form that also

satisfies the -balancing constraint (1.1). Section 3 contains the development of the potential

reduction problem that will be used to solve the linear programming problem, and contains

convergence properties of the potential reduction problem. Section 4 describes the algorithm that is

used to solve (in a limiting sense) the potential reduction problem developed in Section 3. Section 5

discusses modifications and enhancements to the algorithm of Section 4, that are designed to speed

convergence and give more useful information. In particular, Section 5 discusses ways to accelerate the

algorithm via line-searches, improved dual updates via Fraley's restriction of the dual problem [5],

finite termination of the Phase I problem, and obtaining explicit convergence constants related to the

potential function.

6

2. Notation, Problem Formulation, and Conversions

Notation

Throughout the paper, e denotes the vector of ones, e = (1, 1,...,1)T, where the dimension is

n. For any vector x, etc., X denotes the diagonal matrix whose diagonal components correspond to

x. If v ERn, livl[denotes the Euclidean norm, i.e., Ilvii = (E v)2
j=1

Problem Formulation and the 3-Balancing Constraint

The combined Phase I - Phase II linear programming problem is usually expressed in the

format:

LP: z* = minimize cTx (2.1a)
x

s.t. Ax = b (2.lb)

~Tx = 0 (2.1c)

x > 0, (21.d)

where we assume that there is a given infeasible "warm start" vector x0 that satisfies Ax 0 = b

(2.1b), x0 > 0 (2.1d), but for which ~TxO > 0, see [1], [2], and [16]. Thus x0 is "almost feasible"

for LP, and the extent to which x is infeasible is precisely the quantity ETx0. (At the end of this

section, we will show how to convert any linear programming problem with an initial infeasible warm

start into an instance of LP above.) Considering LP as the Phase-II problem, the Phase-I problem for

LP then is the problem:

P1: minimize ~Tx (2.2a)
x

s.t. Ax = b (2.2b)

(Tx > O (2.2c)

x > , (2.2d)

7

and now note that xO is feasible (but not optimal) for P1. We also assume that we are given an

initial lower bound B on the optimal value z* of LP, i.e. B < z*. Such a bound may be readily

available, or can be produced by the algorithm in Todd [17].

In the design of an algorithm for solving LP and P1, that will produce iterate values

xl,x2,x3,..., we would like Txk 0 as k - oo, i.e., the iterates converge to a feasible solution

to LP (and solve P1 to optimality). We also would like cxk z as k oo, i.e., the iterates'

objective values converge to the optimal objective value. Let > 0 be a given (user-specified)

"balancing parameter" that will be used to enforce the following Phase I - Phase II balancing condition

at each iteration:

cT xk z* < fTXk. (2.3)

The left side of (2.3) is the optimal obiective value gap at iteration k, and the right side is times

the feasibility gap. Thus (2.3) states that the optimal objective value gap must be less than 3 times

the feasibility gap. An alternate way to write (2.3) is

cTxk - *
Tc x < / (2.4)

~Txk

In this form, we see that the ratio of the optimal objective value gap to the infeasibility gap cannot

exceed .

If is given and (2.3) is enforced throughout the algorithm, then acts as a pre-specified

balancing factor that will bound the optimal objective value gap in terms of the feasibility gap. For

example, if feasibility is much more important than optimality, then can be chosen to be a large

number (= 1,000, for example) whereby from (2.3) we see that the feasibility gap does not coerce a

small optimal value gap. If on the other hand, staying near the optimal objective value is more

important, then /3 can be chosen to be a small number (= 0.001, for example). Then from (2.3),

the feasibility gap does coerce a small optimal objective value gap. From (2.3), we see that at iteration

8

k, the deviation from the optimal objective value (cTxk - z*) is bounded in terms of the extent of

infeasibility (ETxk) by the constant , i.e.,

cTx k - z* < P3Txk

However, z* is not known in advance; only a lower bound B on z* is known in advance. The

algorithm developed in this paper will produce an increasing sequence of bounds B1 ,B2 ,..., on z*

where Bk is the bound produced at iteration k. Since we do not know z* in advance, the algorithm

will enforce the following balancing condition:

cTxk _ Bk < TXk, (2.5)

where (2.5) is identical to (2.3) except that z* is replaced by the bound Bk. Note that since

Bk < z*, then (2.5) implies (2.3), i.e.

cTx k _ z* < Txk whenever cTx k- Bk < Txk.

We can rearrange (2.5) into the more standard format:

(-/A +)Txk < Bk. (2.6)

We refer to (2.6) as the "-balancing constraint" at iteration k. In order to satisfy (2.6) at the start of

the algorithm, we will need the initial assumption that (-/O + c)TXO < B0 . (At the end of this

section, we will show how to convert any linear programming problem with an infeasible warm start

x0 into an instance of LP for which (-/e + c)TXO < B is satisfied). We now summarize the data

and other assumptions we will use for the rest of this study:

9

A(i) The given data for LP is the array (A, , b, c, x0 , B0 , 13)

A(ii) AxO = b, TxO > O, x0 > 0, B < z*

A(iii) 3 > 0 and (-1+c)TxO < B0

A(iv) The set of optimal solutions of LP is a bounded set.

A(v) n > 3.

Assumptions A(i)-A(iii) have been reviewed above. Assumption A(iv) is a standard (though

nontrivial) assumption needed for convergence of all interior-point algorithms. (See Vial [18] and

Anstreicher [4] for ways to mitigate this assumption.) Assumption A(v) is trivial, since for n < 2 the

problem LP lends itself to instant analysis. We now show how to convert a linear program satisfying

A(iv) and A(v) into the standard form LP of (2.1) and that satisfies all assumptions A(i)-A(v).

Converting a Linear Program into an Instance of LP Satisfying A(i)-A(v)

Suppose we want to solve the linear program:

LP: z* = min cT (2.7a)

s.t. Ak = b (2.7b)

Sx > 0, (2.7c)

where is mxn and it is assumed that n > 3, and ico is a given "warm start" that is hopefully

near-feasible and near-optimal. Also suppose that B is a known given lower bound on z*. Then the

given data for the problem LP is the array (, b, , c0 , B0). In a typical situation, /O may be the

optimal solution to a previous version of LP that is hopefully a good near-feasible and near-optimal

for the current linear program LP. Alternatively, iO may be a basic solution to LP for a basis that

is suspected of being close to the optimal basis. Knowledge of B0 can be given in a number of ways.

If L is the size of the array (A,b,c) (i.e., L is the number of bits needed to encode the data (A,b,c)

in binary form), then one value of B that can be used is -2 L, but this is not practical. A more

10

practical approach would be to set B to be some large negative number such as -1012. However, if

the user has a good knowledge of the program LP, he/she may be able to set BO fairly accurately.

(For example, suppose LP is a refinery problem. Then it is reasonable that a lower bound on the cost

of operating the refinery is readily apparent from knowledge of the data that have been used to

generate the program LP). It should also be pointed out that an algorithm for generating a reasonable

bound B has been developed in Todd [17].

We first assume that c0o satisfies the equations 2.7b, i.e., AcO = b. This will certainly be

the case if ko is a basic solution for a (hopefully near-optimal) basis of A. If i 0 does not satisfy

(2.7b), then ft0 can be projected onto the linear manifold {lAfk = b} by choosing any suitable

projection, e.g.,

ft - D[I - DAT(AD2 AT)-i1AD]tO + D2 AT(AD2AT)-b,

where D is any positive-definite matrix (e.g., D = I or D is a positive-diagonal matrix). It is

assumed that 0 ;/ 0, for otherwise 0 would be an interior feasible solution to (2.7) and there

would be no need for a Phase I procedure to be part of the solution to (2.7).

Now let h > 0 be any vector that satisfies i 0 + h > 0. Then our problem L^P is equivalent

to:

LP2: min cTft (2.8a)
x,w

s.t. Af = b (2.8b)

i + h > 0 (2.8c)

v = 0, (2.8d)

where we note that (,v) = (i0,1) is feasible for (2.8) except for the last constraint (2.8d), which

measures the infeasibilities of t0 . If Lp 2 is the Phase-II problem, then the Phase-I problem can be

written as:

11

LP 1: minimize w (2.9a)
x,w

s.t. Ax = b (2.9b)

x + *h > 0 (2.9c)

w > 0. (2.9d)

Notice that (,w) = (,1) is feasible for LP1 , and in fact,

(i,w) = (0,)

is feasible for LP1 for any > 1, due to the fact that h > 0.

Let 3 be the pre-specified balancing parameter discussed previously. Then if w0 is given

by:

= max{1 1 + (O B) } (2.10)

then (,v0) will satisfy

AiO = b (2.1 la)

+ h > 0 (2.11b)

(_3 + JTO) < B0
(2.11c)

Thus the pair (0,w) is feasible for the Phase-I problem LP1 (2.9) and also satisfies (2.11c), which is

the analog of Assumption A(iii) for this problem. Also, (,*) satisfies all constraints of LP2 (2.8)

except (2.8d).

In order to convert LP2 (2.8) to an instance of LP (2.1), we proceed as follows. First, let x

denote the slack vector

- - _

12

x = i + h. (2.12)

Then x = + w h > 0 denotes the starting slack variables for the starting solution (,v 0) of

LP1 (2.9).

The next step is to eliminate the variable v from the systems (2.8) and (2.9). To do this,

assume with no loss of generality that the vectors Ah and b are not linearly independent. (If this is

not the case, a perturbation of h > 0 will enforce their linear independence). Then let A ERm be

any vector for which

ATb = 0

AT(Ah) = 1,

(such a A is simple to compute), and let

= ATA.

Then note that all x, , v that satisfy (2.8b) and (2.12) satisfy

~Tx = TAx = ATA(+ h) = ATb + ATAh = *. (2.13)

Thus we can substitute and by x (from 2.12) and Tx (from 2.13) in (2.8) and (2.9). If we

define

c = - Th and A = - tAhT,

then LP2 transforms to:

LP: minimize cTx
X

s.t. Ax = b

x>O
Tx O,

andX = P1transforms to:

and P1 transforms to:

13

minimize
x

s.t.

TX

Ax =b

x>O

~*x > 0,

Also, x = x° + w0h satisfies AxO = b, x > 0, TxO = w0 > 0, and (2.11c) transforms to

(- + c)Tx 0 < B0 . (2.14)

Note that (Tx0 = i = max{1, 1 + (T - B) }, from (2.10). Also, if LP 2 satisfies A(iv), then

it is easy to verify that LP does as well.

3. The Potential Reduction Problem for Solving LP and Convergence Properties

In this section we consider solving the "standard form" problem

LP: z* = min cTxX

Ax =b (3.1)

~Tx = 0,

x> 0,

whose dual is

max bTlr

AT7r + SO + s = c

s > 0.

(3.2)

P1:

LD:

14

It is assumed that the data array (A, , b, c, x, B0 , /3) satisfies assumptions A(i)-A(vi) of the

previous section.

The Phase-I problem for LP then is to solve

P1: minimize Txx

s.t. Ax = b

fTx > 0 (3.3)

x > 0.

We will not work with this problem (P1), but will instead augment P1 with the additional

balancing constraint involving the lower bound B on the optimal value z* of LP and the balancing

parameter /3 discussed in Section 2. Suppose B is the given lower bound on z* and that /3 is

the balancing parameter for which the starting point x satisfies

(-P/ + c)TXO < B0, (3.4)

see Assumption A(iii). (The method for satisfying (3.4) was discussed in Section 2.) Now consider the

parametric family of augmented Phase-I problems

PB: zB = minimize (TX

s.t. Ax = b

(-/e + c)Tx + t = B (3.5)

x > 0, t > 0

whose dual is given by:

15

DB: zB = maximize bTir- BP
7r,1,s

ATr - (-3 + C)p + s = (3.6)

s > 0, > 0.

The following are elementary properties PB:

Proposition 3.1. For all B E [B0 , z*]

(i) PB is feasible,

(ii) ZB > O if B < z*,

ZB = 0 if B = z*.

(iii) The set of optimal solutions to PB is nonempty and bounded.

(iv) For all x feasible for PB,

TX < Z* + P3TX.

Proof: (i) Let t = B - (-3 + c)TxO. From Assumption A(ii) and (3.4) it follows that (x0,t°) is

feasible for P 0 and so (xO,t) is also feasible for PB for any B > B, where t = B -(-F + c)Trx .

(ii) Suppose B < z*. Then if zB < 0, there exists x for which Ax = b, x > 0, Tx = 0,

(-k + c)'Tx < B < z*, and so cx < z*, violating the definition of z*. Thus zB > 0. If B =z*,

then a similar argument establishes that zB = 0.

(iii) Suppose the set of optimal solutions to PB is not bounded. Then there is a direction

d 0 that satisfies 'Td = 0, Ad = 0, d > 0, (-Ai + c)Td < 0, and so cTd < 0. Therefore d is

a nontrivial ray of the optimal solution set of LP, violating the assumption that LP has a bounded set

of optimal solutions.

(iv) (-Pf + c)Tx < B implies cTx < eTX + B < kTX + z. 0l

16

Now consider the followng potential reduction problem related to PB and DB:

PR: minimize F(x,t) = q n((Tx) - E En x. - n t (3.7)
x,t,B j= 3 J

s.t. Ax = b (3.8a)

(-l5k + c)Tx + t = B (3.8b)

x > 0, t > 0 (3.8c)

B < z*, (3.9)

where q is a parameter satisfying q > n+l, and (3.8) reflects feasibility for PB, for B < z*,

which is given in (3.9). The followng lemma relates potential funtion values to the objective function

TX of problem PB'

Lemma 3.1. Suppose (x0 ,t0 ,B0) is the starting point of an algorithm for solving PR and suppose

that z* < +oo. Suppose (x,t,B) is a feasible point generated by the algorithm, and that

~T < TX 'O Let

A = F(x 0,t 0) - F(,t). (3.10)

Then FTx < (TxO)Cle -A/q

where C1 is computed from the optimal value of the following linear program:

(q)
PC: (C1) n+ = (n+l)-1 max eT(X)-lx + (t 0)-lt (3.11a)

x,t

s.t. Ax =b (3.11b)

(-/? + c)Tx + t < z* (3.11c)

TX < TX0 (3.11d)

-ITx < 0 (3.11e)

17

Proof: The pair (x ,t) is feasible for PC. If PC is unbounded, then there exists (d,v) satisfying

d > 0, v > 0, Ad 0, (-f + c)Td + v < 0, ~Td < 0, -Td < 0, and eT(X0)-ld + (t0)-lv > 0.

Thus d > 0, Ad = 0, (Td = 0, cTd + v < 0, v > 0, and so cTd < 0 and d 0, contradicting

the assumption that the set of optimal solutions to LP is a bounded set. Thus C1 is well-defined, and

0 < C 1 < +.

Since (x,t) is also feasible for PC,

e T(X)-lx + (t0) -lt < (n+1)(C1)n+l

Thus by the arithmetic-geometric mean inequality, it then follows that

E nj + ent - nx- t o < q En C. (3.12)
j=1 j=1 J

Next, from (3.10) and (3.7), we have

qen((Tx) = qen(TxO) + ElEny + nt - ElenxP - ent - A

< qn(TxO) + qenC 1 - A,

where the inequality follows from (3.12). Exponentiating and rearranging yields the result.

Note that if the size of , x0 , and t are O(L), then C1 < 2 L, provided that z* < +oo.

We will demonstrate an algorithm in Section 4 that will reduce F(x,t) by a fixed constant

6 > at each iteration, if q > n + 1 + n+l, with the additional property that the values of ~Tx

monotonically decrease at each iteration. This will be the basis for the following convergence theorem:

Theorem 3.1 (Convergence). Suppose (xk,tk,Bk), k = 0,..., is a sequence of feasible solutions to

problem PR with the property that F(xk+1l,tk+1) < F(xk,tk) - 1 and ETxk+l < T xk

k = 0,1,...,. Suppose that z* < +oo. Then with C 1 as given in (3.11),

18

(i) < Txk < (T0)Cle-k/6q

Let (*,B*,s*) be any optimal solution to LD. Then

(ii) -0*I(TxO)C1 ek/6 q < cTx k z* < (/Tx0)C e -k / 6 q

(iii) -10*l(<Tx0)e- k /6 q < T k Bk < (Tx)C1 e- k / 6 q

k ; e B~ (~O~ l~/-k/6q
(iv) 0 <z* - Bk < (+ *I)Clek / q

Theorem 3.1(i) states that fixed improvement in the phase-I objective value 'rxk is obtained in

O(q) iterations. The convergence results in Theorem 3.1(ii) relate the convergence of the phase-II

objective value cTxk to the optimal value z*. Similar convergence results for the lower bounds Bk

are given in (iii) and (iv) of the theorem.

Proof of Theorem 3.1: Letting (,t) = (xk,tk), (i) follows from Lemma 3.1, where from (3.10)

A > k/6. From the convexity properties of linear programming duality, we obtain from Proposition

A.3 of the Appendix that

c x > z* + 0B*Tx for any x satisfying Ax = b, x > 0, (3.15)

and so cTxk - Bk > cTxk - z* > 0*~Txk 10*Tx)C1e -k / 6 q (3.16)

Furthermore, from (3.8b), we obtain

Tx k z* < cTx k - Bk < TO-Txk < (Tx0)Ce-k/6q

and (3.16) and (3.17) combine to prove (ii) and (iii). (iv) is a consequence of (ii) and (iii).

4. The Algorithm for Solving the Potential Reduction Problem PR

In this section, we present an algorithm that obtains a decrease of 6 > 1 in the potential

function F(x,t) of problem PR (3.7-3.9) at each iteration, and that is monotone decreasing in the

values of Tx, given q > n + 1 + ,~n+l.

19

Suppose the current iterate values for PR is the array (,t,B), which is feasible for PR. As in

the standard potential reduction algorithm (see Ye [20], Gonzaga [11], [6], and Anstreicher [3]), we seek

to compute a primal direction that will decrease the potential function. Since the primal variables are

(x,t) = (2,t), we seek a direction (d,i) and a suitable step-length a for which F(x - ad, t - ai),

achieves a constant decrease over F(,t). Analogous to [20], [6], and [3], we let (d,i) be the solution

to the following optimization problem:

Q: maximize q IT - eTX-l)d - lr- 1 dTX-2 d - 1 -2 r2 (4.la)
d,r X 2 2

s.t. Ad = 0 (7r) (4.lb)

(-/ + c)Td + r = 0 (-0) (4.1c)

Td > 0 (6), (4.1d)

where the quantities (7r), (-0), (6) indicated are the dual multipliers on the constraints.

This problem has a strictly concave quadratic objective, and since (d,r) = (0,0) is a feasible

solution, it will attain its optimum uniquely. Program Q can be interpreted as the standard rescaled

projection of the rescaled gradient of the potential function onto the null space of the equations (3.8a-

b), with the simple monotonicity constraint (see Anstreicher [3]) added as well in (4.1d). The unique

solution (,~r) to Q is obtained by solving the following Karush-Kuhn-Tucker conditions for

(d,i ,*, ,6):

Ad = 0 (4.2a)

(-,/ + c) T d + i = 0 (4.2b)

(Td > 0 (4.2c)

q , x-le X-2d = AT * - (-/3 +c)0- 6 (4.2d)

t-1 t§ 2 r =- (4.2e)

6 > 0, ((T d) = 0. (4.2f)

20

It will be convenient to set

s = X-1 (e + X-'d) (4.2g)

and to rewrite (4.2e) as

= -1(1 + 1(4.2h)

Next we define

T = 'X- 2 a + (t) 2 (43)

and note from (4.2g) and (4.2h) that

= (e - Xg)T(e - X) + (1 - t) 2 (4.4)

and from (4.2a-f) that

q ,Ta eTX-1d -_ -1 = 2. (4.5)

Just as in [6], for example, we have:

Theorem 4.1 (Primal Improvement). For 0 < a < 1,

(i) (x - (a/5)d, t - (a/)I,B) is feasible for PR,

(ii) F(-(a/), t -(a/)i) < F(x,t)- a + 21-a and

(iii) if 5 > 5 and a = 2

F(x - (-/5), t- (-/5)r, s, u) < F(x, t) 6.

Proof: (i) Since the only variables that change are x,t, (3.9) is still satisfied. And since (d,r) lies in

the null space of (3.8a-b), it only remains to show that x - (a/5)d > 0, t - (a/5) > 0. This will

follow from (4.3), which implies that

I(X-ld)jl < , j = 1,...,n, and I/il < 5.

Therefore x - (c/) = X(e- (a/5y)X-ld) > 0 for a E [0,1)

t - (a/5)i = t(1 - (a/Y)(ft)) > 0 for a E [0,1).and

21

Furthermore, from Proposition A.2 of the Appendix,

n -1-
en(l - (/)(X-ld)j) + n(l- ()('i))

j=l

n (a/) 2 (x-ld) 2 (___)2(__)
2

> -(a/7)eTXld - E 2(1-a) -(t/7)(/f) - 2(1-a)
j=1

-(a/^)[eTX-d + r/] - a2 (dTX -2) + (/i) 2)
2(j2)(l_a)

-(y)[eTXld + r/t] 2(-a) (from 4.3) (4.6)

(ii) F(x-(/), t-(a/V)f)- F(,t)

q (/I) Td) e- n(1 - (a/)(X-ld)j)- en(1- (a/V)(/it))

<q ,,I aT 1a2
< -T- (a/+)T a + (a/)[eTX-ld _+ r/] + a2

(which follows from (4.6) and Proposition A.1 of the Appendix)

- (1\ (q YTd 2 ~- 1 a2

-(-a/) (- T - eX-d - -1) _+ 2(1)

(-a) 2 + (from 4.5)
2(1-a)

2
-poe 2(1-a)

This proves (ii). Then (iii) follows by direct substitution. 0

Theorem 4.1 guarantees a decrease in F(x,t) if the value of = V is sufficiently large, e.g.,

if > 4/5. In the case when is small, we can obtain a reduction in the potential function by

replacing the bound B on z* by a new bound B generated from new dual variables (r,0,) for LD.

22

Lemma 4.1 (Dual Improvement). Suppose < 1 and q > n + 1 + n+ . Define

(ir,,s) = (, p - - (4.7)

where *r, , , 6 are given in the solution to (4.2). Then

(*r, ,) is feasible for LD, with dual objective value

Bc bVr > B + (1+f-) t . (4.8)

Proof: If < 1, it follows from (4.4) that > 0 and > 0. Therefore (r, , s) is well defined

(since we also have ITx > 0), and > 0. Then it is easily verified from (4.2d) and (4.2g) that

ATr + ~0 + s = c, and so (r, 0, s) is feasible for LD, with dual objective value B bTfr =

XTAT r

= - T _ T-T

cTx - 1 eT(e + X-ld) (TX(_ q

= cTX - T + (-n - eTX-ld + sCT + q)
9

~T1 _T_=B-t + (q-n- e X) +

= + (q- n -t - e d) + X
9 9

= B + 1 (q- n- (1 + /i) -e TX-ld) + (T

B + 1 (q-(n+l)- [evX - ld + /l)

>B + >B+
> B - (>+1)

(from (4.2g) and (4.7))

(from (3.8b))

(from (4.2h))

(from (4.3)

where the last inequality follows from (4.4) which implies that t < (1+7). 0

s)

23

We now can prove:

Theorem 4.2 (Dual Improvement). Suppose y < 1 and q > n + 1 + n+l. Define (r,0,g) as in

(4.7), as in (4.8) and let

= t + B- B. (4.9)

Then:

(i) (x,t,B) is feasible for PR, and

F(x,t) < F(J,t) - n(1 + +))

(ii) If < 4/5, then

F(x,t) < F(x,t)- - 6

Proof: Because (ir,O,§) is feasible for LD and B = bTfr, then B < z*, and so B satisfies (3.9).

Also x satisfies (3.8a), and > 0. Finally, we need to show that (-/3 + c)T x + t = B, but this

follows easily since (-F + c)Tx + t = B and t = t + B - B, and so (3.8b) is satisfied. Also, since

B > B (4.8), t > t > 0, and so (3.8c) is satisfied. Thus (t,B) is feasible in PR.

In order to demonstrate the decrease in the potential function, we note

F(,t) - F(,t) =-en(it) + en(t) = -en(t/t)

=- -en((+ B - B)/t)

= -en(1 + (1 - B)/i)

< ~-n(1 + 1+1(;)7)) (from (4.8))

1<_-
- 6

because < 45 and n > 3.

�__�_�__II ___ �

24

The following algorithm is a summary of the analysis of this section:

Algorithm 1 (A, b, c, , 3, x, to , B0 , q,) (q > n+ 1+ n+1, < 1).

Step 0 (Initialization) k = 0

Step 1 (Compute Primal Direction) (,t,B) = (xk,tk,Bk)

Compute (d, i, , ,) from (4.2a-h)

Compute y from (4.3)

Step 2 (Determine whether to take Primal Step or to Update Dual Bound)

If > y, go to Step 3.

If ~ < , go to Step 4.

Step 3 (Take a Primal Step)

Set (,t) = (- (/), t- (a/7)i), where = 2/5.

Set B = B.

Go to Step 5.

Step 4 (Update Dual Bound)

Compute (*,O,s) from (4.7).

Compute B from (4.8).

Compute t from (4.9).

Set x = x.

Go to Step 5.

Step 5 (Redefine all Variables and Return)

k+1 k+1 k+1
(x k+l,tk+l ,Bk+l)= (k,t,B)

k - k+1.

Go to Step 1.

With q = n + 1 + n+l and 7 = 4/5, Theorems 4.1 and 4.2 guarantee a decrease in the

F(x,t) of at least = 1/6 at each iteration of Algorithm 1, yielding the bounds on convergence as

25

stated in Theorem 3.1.

The next Section discusses ways to accelerate and improve Algorithm 1, and discusses other

features as well.

5. Modifications and Enhancements to Algorithm 1

Use of a line-search of the potential function. Instead of using a fixed step-length of a in Step 3, a

can be determined by a line-search of the potential function F(x,t). Todd and Burrell [14] have shown

that F(x,t) is quasiconvex, and so the line-search procedure is very simple to execute.

A similar idea can be used to improve the bound B in Step 4 of the algorithm. Suppose

(r,O,§) was a previous solution to the dual LD resulting in the previous bound B = bTr. Then at

Step 4, the new dual solution is (r,0,g) with B = bTr > B, from (4.8). A min-ratio test can be

used to compute the largest value a* of a for which the affine combination a(*r,0,§) +

(l-a)(,,S) is feasible for LD, and since a* > 1, B* A bT(a*r + (1-ca*)r) > B. This new value

B* is a valid lower bound on z*, and can be used instead of at Step 4. A further enhancement

on the choice of B is discussed next.

Update the lower bound B using Fraley's Restriction of the Dual. In Fraley [5], a two-dimensional

restriction of the dual problem is developed. This restriction has been used to great advantage in Todd

[17], e.g. Here we motivate this problem and show its use in updating the lower bound B in

Algorithm 1. Substituting bT = TAT = eTXAT in LD (3.2) and multiplying the constraints by X

yields the equivalent form of LD:

LD': max eTXAT7r (5.la)
7rOs

s.t. XAT7 r + OX + Xs = Xc (5.1b)

s > . (5.1c)

26

Note from (5.lb) that 5.la is equal to c - TxO - xTs. Also, note that (5.lb) is equivalent to

0(X~)p + (Xs)p = (Xc)p,

where

P = [I- XAT(AX 2 AT)-1AX] (5.2)

and the notation vp denotes the quantity Pv, i.e. vp = Pv.

Thus LD is equivalent to

max c T - Tx 0 - xTs
,s

s.t. (XO)p + (Xs)p = (Xc)p

s > 0.

(5.3a)

(5.3b)

(5.3c)

Now consider the equation system:

0(X)p + Xs + p(e-ep) = (Xc)p. (5.4)

If (p,O,s) solves (5.4), then (,s)

in the sense that the set of feasible

FDR:

solves (5.3b), and so the following program is a restriction of LD"

solutions (in 0 and s) is a subset of those of LD 1 t:

zk = max cTx - Tx _ xTs
P10'se,

(5.5a)

s.t. O(XI)p + Xs + (e - ep) = (Xc)p

s > 0.

(5.5b)

(5.5c)

We denote this linear program as FD R for "Fraley's restricted dual" and note its dependence on

through (5.5) as well as (5.2). Note also that FDx can be solved as a two-dimensional linear program

in n inequalities in the variables 0 and p.

LDt:

27

Now consider a modification of Algorithm 1

replaces (B,t) by (z, t + z - B) whenever FDR

some iteration FDx is unbounded, i.e. zx = +oo,

solution.)

that solves FDx at the start of Step 1, and

has an optimal solution and zx > B. (If at

then z* = +oo and so LP has no feasible

We can show that if Fraley's restricted dual is used to update B at the start of Step 1, then it

will always be the case that > 1, and so Step 4 of the algorithm will never be encountered. To see

this, suppose that Fraley's restricted dual is used to update B at the start of Step 1 as indicated

above. Then B > z. Consider the following proposition:

Proposition 5.1. Let (r, 0,) be the dual solution to LD at Step 4 of Algorithm 1. Then (, 0,)

is feasible for FDy, where / = -1/0 and is given in (4.2), with objective value B (see (4.8)),

and B > B.

Proof: Consider the system (4.2). Ad = 0, so AX(X- 1d) = 0, so (X-ld)p = X-1d. From (4.2d),

T q xa'r-(rr)X q-+ Xc, and X-1 = (-ld)p =-ep- (i- ---)(p +

0(Xc)p. Thus from (4.2g) and (4.7),

X = 1 X§ = 1 (e + X-1d)= 1 (e-ep)-(- q)(X)p + (Xc)

= jP(e- ep) - (X)p + (Xc)p,

and so (ji, 0, s) is feasible for FDR, with objective value cT - (TyC) -_ § = bT = B > .]

Now from the above Proposition, if < 1,

B > > > z, a contradiction. Thus, if B

Algorithm 1 will never be encountered.

then we would produce a solution to FDk with objective

is updated using Fraley's restricted dual, Step 4 of

Check for Finite Termination of Phase I. Suppose the algorithm is at Step 3. Instead of setting

a = 2/5 or determining a by a linesearch of the potential function, one could first test if (- ad)

28

solves the Phase-I problem for some value of a. Since A = b, ETx > 0, Td > 0, > 0, this

amounts to checking if -) d > 0 in the case when 'Td > 0. If indeed x = x - T d > 0,

then x solves the Phase-I problem, and then LP can be solved by a purely Phase II-method, of which

many abound.

A "-optimal" Algorithm for LP. Suppose, instead solving LP, we are interested in finding a feasible

solution to LP whose objective value is within a value > 0 of z*, i.e. cTx < z* + (. (One

can easily imagine a variety of situations where this is a reasonable goal, such as when the objective

function is not well-specified, etc.). Thus we seek a point that satisfies

Ax = b

T- = 0

x>0

cT < zz* + (.

Algorithm 1 can be easily modified to accomplish this goal, as follows: Whenever the bound B is

updated to B in Step 4, replace B by B + (, instead of B. Then all dual bounds Bk will satisfy

Bk < z* + (, and hence all points xk will satisfy

(- 3 +)Txk < Bk < z* + (.

Rearranging gives

CTxk < (z* + () + /pTXk

Then Theorem 3.1(i) is still valid and so as ~Txk 0,

lim sup cTxk < z* + (.
k -oo

29

Whenever B is updated to B in Step 4, B increases by at least > 0. Thus Step 4 can only be

visited at most [Z B0] times. Furthermore, the fact that the bound B is increased by at least ~

should accelerate convergence of the algorithm.

An Explicit Convergence Constant for Algorithm 1. Theorem 3.1 together with Lemma 3.1 state that

all iterates (xk,tkBk) of Algorithm 1 must satisfy

(Txk) < (Tx)Cle-k/6q,

where C1 is given in (3.11). Although it is easy to see that C1 < 2L when z* is finite and 3, x0 ,

and t have size O(L), it is impractical to compute C1. Knowing C1 is nevertheless important

from the point of view of a prior guarantee that Txk will be no larger than a certain value after a

certain number of iterations. Below we show that if an uper bound U on z* is known in advance,

then C1 can be replaced by a known value C1 (derived below) whenever the algorithm visits Step 4.

Lemma 5.1. (Computing a Substitute value of C 1). Suppose Algorithm 1 is in Step 4 at iteration k.

Then let

= 1 n + 1 2 + 7[U - B] + q T

and
n+l

C1 = [(n+)-]

Then:

(i) for all subsequent iterations i > k,

ETXi < (dTxkCle 6q
and

(ii) if 4, then < 4 and D1 < 5[q + 2 (U-B)].5 5 t

�11__�.__11_1

30

Proof: Suppose at iteration k

program:

PB:

that the algorithm is in Step 4. Then < < 1. Consider the linear

T = max eTX-1x + t-lt
x,t

s.t. Ax

(-d + c)TX + t

Tx

-Tx

<U

< T

<0.

Note that since U > z* > Bi, i = k,..., then all

The dual of PB is:

DB:

iterates (xi,ti) will be feasible for PB for i > k.

T =min bTA + US + TX.
A,0,6,p

s.t. AA + (c- E) + (6 - i) > X-le

> 1- 1

(5.6a)

(5.6b)

(5.6c)

it -\

0,5, > O. I3.0a)

Suppose we are at Step 4 of the algorithm, and so < y < 1. Then > 0, and upon setting

(A, , 6, ' ' T() (1) ' O), it can be verified by rearranging (4.2d) that

(A', 0', 6', u') is feasible for DB. To see this, note from (4.3) that X-ld > -me and tl- > -7, and

from (4.2d) that AT(-7r) + 0(-P3 + c) + (6 + -)q = X- 1 (e + X-ld) > X-le(1-1). Dividing

through by (1-V) shows that (A', O', 6', pi) solves (5.6b). Also, from (4.2h),

(1) > 1- () = t -, so (5.6c) is satisfied. Finally, note from (4.2h) and

(4.3) that 0', 6', Il > 0, so (5.6d) is satisfied. Then T < bTAl + U0' + 61TR

----------- -- '--

31

1= [_xTAT* + 0U + q + $~Tx]
- 1-7

= 1 (-(B -t) - - q + n + el + + q +- 1 _- _
~

T
-- q + n + eT - + U + q + Ty,)

1 - (n +

(from (4.2d))

tO + (U - B)0 + e X-ld)

1 (n+ 1 + t1 + (U - B)O + eX-)- 1--- (from (4.2h))

(n + 1 + (U - B)O + q Td - 2) (from (4.5))

from (4.2h). Finally, for any i > k, (xl, t) is feasible in PB, so that

eTX-lxi + t-lti < T < D.

It then follows from the arithmetic-geometric mean inequality that

E fnxij + nt' - n. t < (n + 1)en(D/(n + 1)).
j=l J

The proof of (i) then follows as in Lemma 3.1 and Theorem 3.1(i). To see (ii), note from (4.5) that

q
CX

Td = 7 + eTX-l1 + t-1

< 2 + n+ < 2 + n+l.

Then with < y - 4
5 5

< 5[q + (U -)]
t

since 0 < (1+1)/t

O

32

Acknowledgement

I would like to acknowledge Michael Todd for many stimulating discussions regarding the

warm-start LP problem, which have had an influence on the research herein.

Appendix

Proposition A.1. If x > -1, n(l+x) < x.

x2
Proposition A.2. If Ixl < a < 1, then en(l+x) > x 2(1-)

Proofs of the above two inequalities can be found in [6], among other places.

Proposition A.3. Consider the dual linear programs:

LPr: z*(r) = min cTx
x

s.t. Ax = b

Tx = r

x> O.

LDr: max bT7 r + rO
rT,O

s.t. AT 7r + 0 < c

Suppose (7r*,O*) solves LDo, and let z* = z*(O). Then for any x feasible for LPr,

cTx > z* + O*r.

Proof: Because (7r*,0*) is feasible for the dual LDr for any r,

z*(r) > bTir* + rO* = z*(O) + rO* = z* + rO*.

Therefore, if x is feasible for LPr, cTx > z*(r) > z* + r*.

I I -

33

References

[1] K.M. Anstreicher, "A combined phase I - phase II projective algorithm for linear programming,"
Mathematical Programming 43 (1989) 209-223.

[2] K.M. Anstreicher, "A combined phase I - phase II scaled potential algorithm for linear
programming," CORE Discussion Paper 8939, CORE Catholic University of Louvain, Belgium,
1989.

[3] K.M. Anstreicher, "On monotonicity in the scaled potential algorithm for linear programming,"
Linear Algebra and its Applications 152 (1991) 223-232.

[4] K.M. Anstreicher, "On interior algorithms for linear programming with no regularity
assumptions," Manuscript, Dept. of Operations Research, Yale University, New Haven (February
1991).

[5] C. Fraley, "Linear updates for a single-phase projective method," Operations Research Letters 9
(1990) 169-174.

[6] R.M. Freund, "Polynomial-time algorithms for linear programming based only on primal scaling
and projected gradients of a potential function," Mathematical Programming 51 (1991) 203-222.

[7] R.M. Freund, "Theoretical efficiency of a shifted barrier function algorithm for linear
programming," Linear Algebra and its Applications 152 (1991) 19-41.

[8] R.M. Freund, "A potential-function reduction algorithm for solving a linear program directly
from an infeasible 'warm start'," Working paper 3079-89-MS, Sloan School of Management, MIT,
September 1989, to appear in Mathematical Programming.

[9] G. de Ghellinck and J.-P. Vial, "A polynomial Newton method for linear programming,"
Algorithmica 1 (1986) 425-453.

[10] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "Shifted barrier methods for linear
programming," Technical Report SOL 88-9, Department of Operations Research, Stanford
University, 1988.

[11] C. C. Gonzaga, "Polynomial affine algorithms for linear programming," Mathematical
Programming 49 (1990) 7-21.

[12] N. Karmarkar, "A new polynomial time algorithm for linear programming," Combinatorica 44
(1984) 373-395.

[13] R.A. Polyak, "Modified barrier functions," Report RC 14602, IBM T.J. Watson Research Center,
Yorktown Heights, NY, 1989.

[14] M.J. Todd and B. Burrell, "An extension of Karmarkar's algorithm for linear programming using
dual variables," Algorithmica 1 (1986) 409-424.

[15] M.J. Todd, "On Anstreicher's combined phase I - phase II projective algorithm for linear
programming," Technical Report No. 776, School of OR&IE, Cornell University, Ithaca, NY,
1988, to appear in Mathematical Programming.

-___1.__ _4___111_1_111_1_____yll___---�l .-I_.._ __1�·-·- I--Y I _I-I_ _I_-^

. 1. -

34

[16] M.J. Todd and Y. Wang, "On combined phase 1 - phase 2 projective methods for linear
programming," Technical Report No. 877, School of OR&IE, Cornell University, Ithaca, NY,
1989, to appear in Algorithmica.

[17] M.J. Todd, "Combining phase I and phase II in a potential reduction algorithm for linear
programming," Technical Report No. 907, School of OR&IE, Cornell University, Ithaca, NY,
1990, to appear in SIAM Journal on Optimization.

[18] J.P. Vial, "A projective algorithm for linear programming with no regularity condition,"
University of Geneva, Geneva, Switzerland, 1991.

[19] M.H. Wagner, "Supply-demand decomposition of the national coal model," Operations Research
29 (1981) 1137-1153.

[20] Y. Ye, "An O(n3L) potential reduction algorithm for linear programming," Mathematical
Programming 50 (1991) 239-258.

