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Abstract

We evaluate the practical relevance of two measures of conic convex

problem complexity as applied to second-order cone problems solved us-

ing the homogeneous self-dual (HSD) embedding model in the software

SeDuMi. The first measure we evaluate is Renegar’s data-based condition

measure C(d), and the second measure is a combined measure of the opti-

mal solution size and the initial infeasibility/optimality residuals denoted

by S (where the solution size is measured in a norm that is naturally

associated with the HSD model). We constructed a set of 144 second-

order cone test problems with widely distributed values of C(d) and S

and solved these problems using SeDuMi. For each problem instance in

the test set, we also computed estimates of C(d) (using Peña’s method)

and computed S directly. Our computational experience indicates that
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SeDuMi iteration counts and log(C(d)) are fairly highly correlated (sam-

ple correlation R = 0.676), whereas SeDuMi iteration counts are not quite

as highly correlated with S (R = 0.600). Furthermore, the experimental

evidence indicates that the average rate of convergence of SeDuMi itera-

tions is affected by the condition number C(d) of the problem instance, a

phenomenon that makes some intuitive sense yet is not directly implied

by existing theory.

1 Introduction

The homogeneous self-dual (HSD) embedding model for linear optimization was

originally developed by Ye, Todd, and Mizuno in [14], and has been extended

to the conic case and implemented in software such as SeDuMi [13]. The HSD

model has the very desirable property that it always has a strictly feasible

primal/dual solution regardless of the feasibility of the original problem. Using

a natural norm associated with the HSD model’s starting point, the norms of

approximately optimal solutions and their distances from the boundaries of the

underlying cones are precisely controlled independent of the problem instance,

see [5]. Furthermore, a reinterpretation of a standard stopping criterion for

HSD interior-point methods shows that the performance of these methods is

inherently related to the sizes of optimal solutions and the sizes of the initial

infeasibilities, also see [5].

In this paper we evaluate the relevance of two measures of conic convex

problem complexity as applied to second-order cone problems solved using the

homogeneous self-dual (HSD) embedding model in the software SeDuMi. The

first measure we evaluate is Renegar’s data-based condition measure C(d), and

the second measure is a combined measure of the optimal solution size and the

initial infeasibility/optimality residuals denoted by S (where the solution size is

measured in a norm that is naturally associated with the HSD model).
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Consider the primal-dual conic linear system:

(Pc) minx{cT x | Ax = b, x ∈ CX}
(Dc) maxy,z{bT y | AT y + z = c, z ∈ C∗

X}
(1)

where CX is a closed convex cone and C∗
X is the corresponding dual cone.

The complexity of computing approximately optimal solutions of (Pc) has been

developed along two related approaches. The first approach is via the data-based

condition measure theory of Renegar [1, 2, 9, 10, 11, 12]. The problem data d

is the triplet d = (A, b, c). The “distance to infeasibility” ρ(d) is the minimum

data perturbation ∆d that renders either the perturbed primal (Pc) or dual

(Dc) infeasible. The condition measure C(d) is defined to be the ratio ‖d‖/ρ(d).

This condition measure play a key role in the complexity analysis of (Pc) in [12].

In theory, the number of iterations of a suitably designed interior-point method

(IPM) algorithm (but not the HSD model) needed to approximately solve (Pc)

is bounded by O(
√

ϑ log(C(d) + . . .)), see [12], where ϑ is the self-concordance

parameter of the barrier function used for the cone CX . Two efficient methods

for estimating C(d) have been developed, see Peña [8] and [3], [7].

The second approach to developing a complexity theory for (Pc) is via geo-

metric measures of the problem, using quantities such as the norm of the largest

ε-optimal primal and dual solutions. Let RP
ε denote the norm of the largest ε-

optimal solution of (Pc), with RD
ε defined analogously for the dual cone variables

z, and let Rε := RP
ε +RD

ε . These quantities appear in the complexity analysis of

(Pc) in [4] as well as in [5]. In theory, with a choice of norm naturally connected

to the starting point of the HSD model, the number of iterations of a suitably

designed interior-point method (IPM) needed to approximately solve (Pc) via

the HSD model is bounded by O(
√

ϑ log(Rε + . . .)), see [5]. If the norm is chosen

judiciously, then Rε can be computed efficiently.

The explanatory value of C(d) for non-HSD IPM algorithms was first ex-

plored in [7], which examined the relationship between the condition measure

C(d) and the IPM iterations of the CPLEX barrier software (a commercial IPM

solver) on linear programming problems from the NETLIB suite. It was ob-
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served that 42% of the variation in the IPM iteration counts among the NETLIB

suite problems is accounted for by log(C(d)). The analysis in [7] was limited to

linear programming instances, whose performance with interior-point methods

tends to be different from more general conic linear systems.

In this paper, we explore the relationship between the condition measure

C(d) and the combined solution size and initial infeasibility measure S, and

the number of iterations needed to approximately solve an SOCP problem us-

ing the HSD embedding in the IPM code SeDuMi. We constructed a set of

144 second-order cone test problems with widely distributed values of C(d)

and S and solved these problems using SeDuMi. For each problem instance in

the test set, we also computed estimates of C(d) (using Peña’s method) and

computed S directly. Our computational experience indicates that SeDuMi it-

eration counts and log(C(d)) are fairly highly correlated (sample correlation

R = 0.676), whereas SeDuMi iteration counts are not quite as highly correlated

with S (R = 0.600). Furthermore, the experimental evidence indicates that the

average rate of convergence of SeDuMi iterations is affected by the condition

number C(d) of the problem instance, a phenomenon that makes some intuitive

sense yet is not directly implied by existing theory.

The paper is organized as following: Section 2 presents the notation for the

standard form second-order cone optimization problem and the homogeneous

self-dual embedding model. Section 3 describes the details of computing the

condition measure C(d) of a problem instance using Peña’s method. Section

4 contains the method for creating the test problems and the computational

evaluation of the correlation between C(d) and SeDuMi iterations. Section 5

presents the combined measure of optimal solution size and initial infeasibility

gap denoted by S, and the computational evaluation of the correlation between

S and SeDuMi iterations. Section 6 contains brief concluding remarks.

Acknowledgement. We are grateful to Kim Chuan Toh for computational

advice and for reading and editing an earlier draft of this paper.
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2 Preliminaries

This section defines a standard SOCP problem, followed by a brief review of

the homogeneous self-dual embedding model that is used in SeDuMi.

2.1 SOCP in standard form

The standard second-order cone in IRk is defined to be

Kk
SOC := {v = (v0, v̄) ∈ IR × IRk−1 : ‖v̄‖2 ≤ v0} ,

and we write “v � 0” if v ∈ Kk
SOC. The standard form SOCP primal and dual

problems are:

(P) v∗ := min (cl)T xl + (cq)T xq

s.t. Alxl + Aqxq = b

xl
i ≥ 0, i = 1, . . . , N l, xq

i � 0, i = 1, . . . , Nq

(D) w∗ := max bT y

s.t. (Al)T y + zl = cl,

(Aq)T y + zq = cq,

zl
i ≥ 0, i = 1, . . . , N l, zq

i � 0, i = 1, . . . , Nq

(2)

where y ∈ Rm and the superscript “l” indicates the linear variables and

the coefficients related to the linear variables: xl = [xl
1; . . . ;x

l
N l ], N l is the

number of linear variables, and Al ∈ Rm×N l

and cl ∈ RN l

are the matrices and

objective function vectors associated with the linear variables. Similarly, the

superscript “q” indicates the second-order cone variables and the coefficients

related to the second-order cone variables: Nq is the number of second-order

cones, and nq
i is the dimension of the ith second-order cone and we write xq

i ∈
Rnq

i , i = 1, . . . , Nq and xq = [xq
1; . . . ;x

q
Nq ]. The total number of second-order

cone variables is denoted as nq =
∑Nq

i=1 nq
i . The matrices and objective function

vectors associated with the second-order cone variables are Aq ∈ Rm×nq

, cq ∈
Rnq

. Analogous notation is used for the dual problem.
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Let N = N l + Nq, A = [Al Aq], c = [cl; cq], x = [xl;xq] and z = [zl; zq].

x � 0 (x � 0) means that all xl
i and xq

i are in (the interior of) their defined

cones. We also define, for xq
i , z

q
i � 0,

γ(xq
i ) =

√
(x0

i )2 − ‖x̄i‖2
2, γ(zq

i ) =
√

(z0
i )2 − ‖z̄i‖2

2. (3)

The self-concordant barrier function associated with (P) is

f(x) := −
Nl∑
i=1

ln(xl
i) −

Nq∑
i=1

ln(γ2(xq
i ))

whose complexity value ϑ is:

ϑ = N l + 2Nq , (4)

see [6].

2.2 The Homogeneous Self-Dual Embedding Model

IPM solvers that apply the homogeneous self-dual embedding model embed the

primal and dual problems into the self-dual optimization problem:

(HSD) : minx,y,z,τ,κ,θ ᾱθ

s.t. −Ax +bτ −b̄θ = 0

AT y −cτ −c̄θ +z = 0

−bT y +cT x −ḡθ +κ = 0

b̄T y +c̄T x +ḡτ = ᾱ

x � 0 τ ≥ 0 z � 0 κ ≥ 0 .

(5)

Let (x(0), y(0), z(0), τ (0), κ(0), θ(0)) satisfy x(0) � 0, z(0) � 0, τ (0) > 0, κ(0) > 0,

and θ(0) > 0, and let b̄, c̄, ḡ, ᾱ be defined as follows:

b̄ =
bτ (0) − Ax(0)

θ(0)
; c̄ =

AT y(0) + z(0) − cτ (0)

θ(0)
;

ḡ =
cT x(0) − bT y(0) + κ(0)

θ(0)
; ᾱ =

(x(0))T z(0) + τ (0)κ(0)

θ(0)
.
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If the original problem is primal and dual feasible, (HSD) has an optimal

solution (x∗, y∗, z∗, τ∗, κ∗, θ∗) satisfying θ∗ = 0 and τ∗ > 0. In this case x∗/τ∗

and (y∗/τ∗, z∗/τ∗) will be optimal solutions to the original problems (P) and

(D), respectively.

Let (x, y, z, τ , κ, θ) be a feasible solution of HSD satisfying τ > 0. Then

the current test solutions for (P) and (D) are given by x̄ := x/τ and (ȳ, z̄) :=

(y/τ, z/τ), respectively. HSD IPM solvers, including SeDuMi, compute iterates

until the primal and dual infeasibility and duality gaps of the current iterates’

test solution are small. These are given by:

rp = b − Ax̄ (primal infeasibility gap)

rd = AT ȳ + z̄ − c (dual infeasibility gap)

rg = cT x̄ − bT ȳ (duality gap)

(6)

For example, SeDuMi uses the following criterion for terminating the algorithm:

2
‖rp‖∞

1 + ‖b‖∞ + 2
‖rd‖∞

1 + ‖c‖∞ +
(rg)+

max(|cT x|, |bT y|, 0.001 × τ)
≤ rmax , (7)

where rmax = 10−9 is the default value.

3 Computing the Condition Measure of an SOCP

Problem Instance Using Peña’s Method

Consider the primal feasibility conditions associated with (1):

Ax = b , x ∈ CX . (8)

The data for (1) is d = (A, b, c), the data for the primal feasibility problem is

dP = (A, b), and consider the norm on dP the data given by

‖dP ‖ := ‖[A, −b]‖2 := max{‖Ax − bt‖ : ‖x‖2 + t2 ≤ 1} ,

where the Euclidean norm is used for all vectors in the above expression. Let

IP := {(A, b) : the system (8) is infeasible} .
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The distance to primal infeasibility ρP (d) is defined to be the norm of the

smallest data perturbation ∆dP = (∆A,∆b) that renders the resulting primal

system infeasible:

ρP (dP ) := inf{‖[∆A,∆b]‖2 : (A + ∆A, b + ∆b) ∈ IP } .

We consider the dual problem in a similar way. The dual conic system is:

AT y + z = c , z ∈ C∗
X . (9)

The data for this system is dD = (A, c), and consider the norm on the data

given by

‖dD‖ := ‖[A, −c]‖2 := max{‖AT y − ct‖ : ‖y‖2 + t2 ≤ 1} .

Let

ID := {(A, c) : the system (9) is infeasible} .

The distance to dual infeasibility ρD(d) is defined to be the norm of the smallest

data perturbation ∆dD = (∆A,∆c) that renders the resulting dual system

infeasible:

ρD(dD) := inf{‖[∆A,∆c]‖2 : (A + ∆A, c + ∆c) ∈ ID} .

Since the primal (dual) distance to infeasibility is independent of the data c (b),

we write ρP (d) := ρP (dP ) and ρD(d) := ρD(dD). The condition measure C(d)

of the primal/dual system is the ratio:

C(d) =
‖d‖

min{ρP (d), ρD(d)} ,

where ρP (d) and ρD(d) are the primal and dual distances to infeasibility, re-

spectively, d = (A, b, c) is the data for the primal and dual problems, and ‖d‖
is defined as:

‖d‖ = max {‖dP ‖ , ‖dD‖} . (10)

We remark that C(d) is connected to a wide variety of behavioral, geometric,

and algorithmic complexity bounds on the problems (P) and (D), see [11, 12, 1,

2, 3, 8, 9, 10], for example.
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Computing C(d) involves computing the four quantities ‖dP ‖, ‖dD‖, ρP (d),

ρD(d). Notice that the first two quantities are maximum eigenvalue computa-

tions, for example, ‖dP ‖ = ‖[A,−b]‖2 =
√

λmax([A,−b][A,−b]T ), and so pose

little computational burden. However, the primal and dual distances to infeasi-

bility ρP (d), ρD(d) are not as straightforward to compute. Peña [8] presents an

efficient method for computing lower and upper bounds on the primal and/or

dual distance to infeasibility that involves the solution of six convex optimiza-

tion problems each of whose computational cost is similar to that of the original

primal and/or dual problems. The computational details of Peña’s method are

summarized in the following subsections. For a theoretical justification of the

method, see [8].

3.1 Estimating the distance to infeasibility ρP (d) of the

primal problem

In Peña’s method, the estimation of the distance to infeasibility ρP (d) involves

the following steps.

Step 1: Compute the analytic center (x∗, t∗) of the homogenized primal feasible

region by solving the following problem:

(P1) minx,t f(x, t) := − ln
(
1 − t2 − ‖x‖2

2

) − ln(t) − ∑N l

i=1 ln
(
xl

i

) − ∑Nq

i=1 ln
(
γ2(xq

i )
)

s.t. Ax − bt = 0, x � 0, t > 0 .

(11)

Step 2: Compute the minimum eigenvalue λP and its corresponding unit eigen-

vector VP of the matrix MP = [A,−b]H(x∗, t∗)−1[A,−b]T , where H(x, t) is the

Hessian of f(x, t).

Step 3: Compute optimal solutions (xP
±, tP±) of the following two problems:

(P2) δP
± := min δ

s.t. Ax − bt = ±VP ,

x � 0, t ≥ 0,√
t2 + ‖x‖2

2 ≤ δ .

(12)

9



Step 4: Compute lower and upper bound for ρP (d) and the associated pertur-

bation to infeasibility:

LP (d) =:
√

λP ≤ ρP (d) ≤ min
{

1
δP
+

,
1
δP−

, ϑ
√

λP

}
:= UP (d). (13)

(∆AP ,∆bP ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

δP
+

)2

(−VP (xP
+)T , VP tP+) if δP

+ > δP
−

(
1

δP
−

)2

(VP (xP
−)T ,−VP tP−) if δP

+ ≤ δP
− .

(14)

According to Propositions 3.1 and 4.1 of [9], and by using some intermediary

results of Peña’s method, it follows that (A + (1 + ε)∆AP , b + (1 + ε)∆bP ) ∈ IP
for all ε > 0.

3.2 Estimating the distance to infeasibility ρD(d) of the

dual problem

The estimation of the distance to infeasibility ρD(d) is quite similar to that for

ρP (d), and involves the following steps.

Step 1: Compute the analytic center (y∗, p∗, z∗) of the homogenized dual fea-

sible region by solving the following problem:

(D1) miny,p,z − ln
(
1 − p2 − ‖y‖2

2

) − ln(p) − ∑N l

i=1 ln
(
zl
i

) − ∑Nq

i=1 ln
(
γ2(zq

i )
)

s.t. AT y + z − cp = 0, z � 0, p > 0.

(15)

Step 2: Compute the minimum eigenvalue λD and its corresponding unit eigen-

vector VD of the matrix MD = [AT ,−c]H(y∗, p∗)−1[AT ,−c]T + H(z∗), where

H(y, p) is the Hessian of the function f(y, p) = − ln(1 − ‖y‖2
2 − p2) − ln(p) and

H(z) is the Hessian of the function f(z) = −∑N l

i=1 ln
(
zl
i

) − ∑Nq

i=1 ln
(
γ2(zq

i )
)
.

Step 3: Compute optimal solutions yP
±, pP

±, zP
± of the following two problems:

(P2) δD
± := min δ

s.t. AT y + z − cp = ±VD,

z � 0, p ≥ 0,√
p2 + ‖y‖2

2 ≤ δ .

(16)
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Step 4: Compute lower and upper bound for ρD(d) and the associated pertur-

bation to infeasibility:

LD(d) =:
√

λD ≤ ρD(d) ≤ min
{

1
δD
+

,
1

δD−
, ϑ

√
λD

}
:= UD(d). (17)

(∆AD,∆cD) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

δD
+

)2

(−yD
+ (VD)T , VDpD

+) if δD
+ > δD

−

(
1

δD
−

)2

(yD
− (VD)T ,−VDpD

−) if δD
+ ≤ δD

− .

(18)

As in the case of the primal distance to infeasibility, it follows that (A+(1+

ε)∆AD, c + (1 + ε)∆cD) ∈ ID for all ε > 0.

3.3 Estimating the Condition Measure and Computing

the Associated Perturbation to Infeasibility

Once the bounds on ρP (d) and ρD(d) have been computed, lower and upper

bounds for C(d) are computed as follows:

CL(d) :=
‖d‖

min {UP (d), UD(d)} ≤ C(d) ≤ ‖d‖
min {LP (d), LD(d)} = CU (d). (19)

Finally, the associated perturbation associated with the above estimation

procedure is:

(∆A,∆b,∆c) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∆AP ,∆bP , 0) if UP (d) < UD(d)

(∆AD, 0,∆cD) if UP (d) ≥ UD(d) .

(20)

Using this perturbation, it is straightforward to show that

min{ρP (d+α∆d), ρD(d+α∆d)} ≤ (1−α)min{UP (d), UD(d)} for all α ∈ [0, 1] .

(21)
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4 Test Problems, Condition Measures, and Cor-

relation with SeDuMi Iterations

We created 144 SOCP test problem instances with widely varying condition

measures C(d) as follows. We first created 12 random SOCP instances whose

dimensions are described in Table 1. For each problem instance d = (A, b, c) in

this group of 12, we computed the condition measure C(d) and the associated

perturbation to infeasibility ∆d := (∆A,∆b,∆c) using Peña’s method as de-

scribed in Section 3. We then used this perturbation to create 11 increasingly

ill-conditioned instances of the form (A, b, c)+α(∆A,∆b,∆c) for the 11 different

values of α ∈ (0, 1), namely α = 0.1, 0.5, 0.75, 0.9, 0.95, 0.97, 0.99, 0.995, 0.999,

0.9995, and 0.9999. Note from (21) that the distance to infeasibility of these 11

new instances will approach 0 as α approaches 1, thereby generating problems

that are increasingly ill-conditioned. We applied this procedure to each of the 12

random SOCP problem instances, thus creating a total of 144 SOCP problems

with widely varying condition measures. These problems were named according

to their original instance from the first column of Table 1 and the value of α

that was used to create the perturbed problem instance; for example problem

instance sm 18 999 was created by perturbing problem instance sm 18 by its

associated perturbation to infeasibility using α = 0.999.

We computed the estimates of the condition measure C(d) for each of the

144 problem instances using Peña’s method. Table 2 shows the computed lower

and upper bounds CL and CU , respectively, as well as the logarithm of their

geometric mean C̄ =
√

CLCU . (all logarithm values are base 10). Notice that

C̄ ranges from 102 to 109. Also notice in general that in each problem group

both CL and CU grow inversely proportional to (1 − α), where α is the ex-

tent of perturbation in (21). For example, CL and CU for “sm 18 9995” are

approximately 2 times larger than the values for “sm 18 999” and are 10 times

larger than the values for “sm 18 995”. For those problems with CU close to

109, the minimum eigenvalues of the associated matrices are in the range 10−15
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Table 1: Problem dimensions of 12 randomly generated SOCP problem in-

stances. In the column “SOC Dimensions”, “8×3” means 8 cones of dimension

3, for example.

Problem Rows Variables Nonnegative Second-Order SOC

Instance (m) (n) Variables Cones Dimensions

sm 18 54 913 411 69 [8×3, 7×4, 5×5, 7×6, 7×7

8×8 11×9 8×10, 5×11, 3×12]

sm 19 55 228 57 42 [15×3, 13×4, 10×5, 4×6]

sm2 3 2 54 9 15 [15×3]

sm 5 60 912 429 66 [8×3 4×4, 10×5, 6×6, 9×7

4×8 7×9 7×10, 3×11, 8×12]

md 1 57 409 67 114 [114×3]

lg 1 100 512 7 2 [1×5, 1×500]

md 2 6 733 91 214 [214×3]

sm2 1 7 1297 16 427 [427×3]

md 3 25 1060 10 105 [105×10]

md 5 60 2010 10 200 [200×10]

md 4 25 3010 10 300 [300×10]

md 6 100 2010 10 200 [200×10]
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to 10−16, which are close to the machine ε of 2.2× 10−16. As one would expect,

the computational errors introduced in the analytic center computation or/and

the smallest eigenvalue computation can easily affect the relative accuracy of

the eigenvalue computed for these problems.

Table 2: Condition Measure Estimates for 144 SOCP Problem Instances.

Problem Instance CU CL log(C̄) Problem Instance CU CL log(C̄)

sm 18 1.5E+5 1.1E+4 4.6 md 2 5.3E+4 3.2E+3 4.1

sm 18 1 1.6E+5 1.5E+4 4.7 md 2 1 6.0E+4 4.1E+3 4.2

sm 18 5 2.4E+5 3.1E+4 4.9 md 2 5 5.9E+4 9.3E+3 4.4

sm 18 75 4.4E+5 6.3E+4 5.2 md 2 75 8.4E+4 2.0E+4 4.6

sm 18 9 1.0E+6 1.6E+5 5.6 md 2 9 1.6E+5 5.1E+4 5.0

sm 18 95 1.9E+6 3.2E+5 5.9 md 2 95 2.8E+5 1.0E+5 5.2

sm 18 97 3.1E+6 5.3E+5 6.1 md 2 97 4.4E+5 1.7E+5 5.4

sm 18 99 8.9E+6 1.6E+6 6.6 md 2 99 1.2E+6 5.0E+5 5.9

sm 18 995 1.8E+7 3.2E+6 6.9 md 2 995 2.5E+6 1.0E+6 6.2

sm 18 999 8.8E+7 1.6E+7 7.6 md 2 999 1.2E+7 5.0E+6 6.9

sm 18 9995 1.8E+8 3.2E+7 7.9 md 2 9995 2.5E+7 1.0E+7 7.2

sm 18 9999 8.1E+8 1.6E+8 8.6 md 2 9999 1.2E+8 5.0E+7 7.9

sm 19 1.1E+4 1.3E+3 3.6 sm2 1 1.3E+5 6.9E+3 4.5

sm 19 1 1.2E+4 1.6E+3 3.6 sm2 1 1 1.5E+5 1.0E+4 4.6

sm 19 5 2.2E+4 3.0E+3 3.9 sm2 1 5 2.1E+5 2.3E+4 4.8

sm 19 75 3.9E+4 6.0E+3 4.2 sm2 1 75 3.0E+5 4.7E+4 5.1

sm 19 9 9.1E+4 1.5E+4 4.6 sm2 1 9 4.3E+5 1.2E+5 5.4

sm 19 95 1.8E+5 3.0E+4 4.9 sm2 1 95 7.7E+5 2.4E+5 5.6

sm 19 97 3.0E+5 5.1E+4 5.1 sm2 1 97 1.4E+6 4.0E+5 5.9

sm 19 99 8.9E+5 1.5E+5 5.6 sm2 1 99 3.5E+6 1.2E+6 6.3

sm 19 995 1.8E+6 3.0E+5 5.9 sm2 1 995 6.4E+6 2.4E+6 6.6

sm 19 999 8.9E+6 1.5E+6 6.6 sm2 1 999 3.4E+7 1.2E+7 7.3

sm 19 9995 1.8E+7 3.0E+6 6.9 sm2 1 9995 6.9E+7 2.4E+7 7.6

sm 19 9999 8.9E+7 1.5E+7 7.6 sm2 1 9999 3.4E+8 1.2E+8 8.3

sm2 3 1.6E+2 1.3E+2 2.2 md 3 1.6E+5 2.8E+4 4.8

sm2 3 1 1.8E+2 1.4E+2 2.2 md 3 1 2.0E+5 3.3E+4 4.9

sm2 3 5 3.8E+2 2.6E+2 2.5 md 3 5 3.8E+5 6.6E+4 5.2

sm2 3 75 9.2E+2 5.2E+2 2.8 md 3 75 6.8E+5 1.3E+5 5.5

sm2 3 9 2.3E+3 1.3E+3 3.2 md 3 9 1.5E+6 3.4E+5 5.9

sm2 3 95 4.2E+3 2.6E+3 3.5 md 3 95 2.7E+6 6.8E+5 6.1
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Problem Instance CU CL log(C̄) Problem Instance CU CL log(C̄)

sm2 3 97 6.7E+3 4.4E+3 3.7 md 3 97 4.2E+6 1.1E+6 6.3

sm2 3 99 1.9E+4 1.3E+4 4.2 md 3 99 1.2E+7 3.4E+6 6.8

sm2 3 995 3.9E+4 2.6E+4 4.5 md 3 995 2.3E+7 6.8E+6 7.1

sm2 3 999 1.9E+5 1.3E+5 5.2 md 3 999 1.1E+8 3.4E+7 7.8

sm2 3 9995 3.8E+5 2.6E+5 5.5 md 3 9995 2.3E+8 6.8E+7 8.1

sm2 3 9999 1.9E+6 1.3E+6 6.2 md 3 9999 9.0E+8 3.4E+8 8.7

sm 5 1.3E+5 1.0E+4 4.6 md 5 1.7E+6 2.1E+5 5.8

sm 5 1 1.5E+5 1.3E+4 4.6 md 5 1 2.1E+6 2.4E+5 5.9

sm 5 5 2.0E+5 2.5E+4 4.8 md 5 5 3.4E+6 4.8E+5 6.1

sm 5 75 3.3E+5 5.0E+4 5.1 md 5 75 6.0E+6 9.9E+5 6.4

sm 5 9 7.3E+5 1.3E+5 5.5 md 5 9 1.4E+7 2.5E+6 6.8

sm 5 95 1.4E+6 2.6E+5 5.8 md 5 95 2.7E+7 5.0E+6 7.1

sm 5 97 2.3E+6 4.3E+5 6.0 md 5 97 4.4E+7 8.4E+6 7.3

sm 5 99 6.7E+6 1.3E+6 6.5 md 5 99 1.3E+8 2.5E+7 7.8

sm 5 995 1.3E+7 2.6E+6 6.8 md 5 995 2.5E+8 5.0E+7 8.1

sm 5 999 6.8E+7 1.3E+7 7.5 md 5 999 9.0E+8 2.5E+8 8.7

sm 5 9995 1.4E+8 2.6E+7 7.8 md 5 9995 1.7E+9 5.0E+8 9.0

sm 5 9999 6.8E+8 1.3E+8 8.5 md 5 9999 2.1E+9 2.5E+9 9.4

md 1 5.1E+4 3.4E+3 4.1 md 4 2.3E+6 3.1E+5 5.9

md 1 1 5.4E+4 4.4E+3 4.2 md 4 1 3.1E+6 3.6E+5 6.0

md 1 5 7.8E+4 8.4E+3 4.4 md 4 5 5.5E+6 7.0E+5 6.3

md 1 75 1.3E+5 1.7E+4 4.7 md 4 75 9.1E+6 1.5E+6 6.6

md 1 9 3.1E+5 4.4E+4 5.1 md 4 9 1.9E+7 3.7E+6 6.9

md 1 95 6.2E+5 8.8E+4 5.4 md 4 95 3.2E+7 7.4E+6 7.2

md 1 97 1.0E+6 1.5E+5 5.6 md 4 97 5.0E+7 1.2E+7 7.4

md 1 99 3.1E+6 4.4E+5 6.1 md 4 99 1.4E+8 3.7E+7 7.9

md 1 995 6.1E+6 8.9E+5 6.4 md 4 995 2.7E+8 7.4E+7 8.2

md 1 999 3.0E+7 4.4E+6 7.1 md 4 999 1.2E+9 3.7E+8 8.8

md 1 9995 6.0E+7 8.9E+6 7.4 md 4 9995 2.0E+9 7.4E+8 9.1

md 1 9999 3.0E+8 4.4E+7 8.1 md 4 9999 6.6E+9 3.7E+9 9.7

lg 1 7.5E+2 4.2E+2 2.7 md 6 3.3E+6 2.6E+5 6.0

lg 1 1 8.3E+2 4.8E+2 2.8 md 6 1 3.8E+6 4.0E+5 6.1

lg 1 5 1.5E+3 9.3E+2 3.1 md 6 5 6.5E+6 8.0E+5 6.4

lg 1 75 2.9E+3 1.9E+3 3.4 md 6 75 1.2E+7 1.6E+6 6.6

lg 1 9 7.3E+3 4.8E+3 3.8 md 6 9 2.8E+7 4.1E+6 7.0

lg 1 95 1.5E+4 9.5E+3 4.1 md 6 95 5.5E+7 8.3E+6 7.3

lg 1 97 2.4E+4 1.6E+4 4.3 md 6 97 9.0E+7 1.4E+7 7.5
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Problem Instance CU CL log(C̄) Problem Instance CU CL log(C̄)

lg 1 99 7.3E+4 4.8E+4 4.8 md 6 99 2.5E+8 4.1E+7 8.0

lg 1 995 1.4E+5 9.5E+4 5.1 md 6 995 4.3E+8 8.2E+7 8.3

lg 1 999 7.2E+5 4.8E+5 5.8 md 6 999 8.3E+8 4.1E+8 8.8

lg 1 9995 1.4E+6 9.5E+5 6.1 md 6 9995 9.9E+8 8.2E+8 9.0

lg 1 9999 7.2E+6 4.8E+6 6.8 md 6 9999 1.3E+9 4.1E+9 9.4

4.1 Correlation of Condition Measures and SeDuMi Iter-

ations

In this subsection we analyze the correlation between log(C̄) and the number

of IPM iterations used by SeDuMi to solve a given problem instance. Table 3

shows the number of IPM iterations used by SeDuMi to solve each of the 144

test problem instances using SeDuMi default parameters. Notice from Table 3

that within each of the 12 groups of problems, the iterations grow with log(C̄),

thereby suggesting that SeDuMi iterations should be positively correlated with

log(C̄). Figure 1 presents a scatter plot of log(C̄) and SeDuMi iterations for

all 144 problems. The figure clearly indicates such a trend. For small values

of log(C̄) the SeDuMi iterations is almost precisely predictable. However, for

larger values of log(C̄) there is greater variability in the SeDuMi iterations. We

computed the sample correlation R for the 144 values of log(C̄) and SeDuMi

iterations, which yielded a sample correlation R = 0.676, indicating a fairly

strong linear relationship between these two values.

Figure 2 shows line plots of log(C̄) and SeDuMi iterations for each of the

12 groups of problem instances. This figure shows that within each problem

group, there is a striking linear relationship between these two quantities. We

ran simple linear regression models for each of the 12 sets of 12 data pairs, the

results of which are shown in Table 4. Notice that the regression R2 for each

of the 12 regressions is at least 0.896, with half of these having R2 ≥ 0.949.

However, as Figure 1 showed, when taken as a whole, the 144 pairs do not have
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Table 3: SeDuMi IPM Iterations for the 144 SOCP Problem Instances.

Problem Iterations Problem Iterations Problem Iterations Problem Iterations

sm 18 16 sm 5 16 md 2 16 md 5 15

sm 18 1 16 sm 5 1 15 md 2 1 16 md 5 1 15

sm 18 5 16 sm 5 5 15 md 2 5 16 md 5 5 15

sm 18 75 17 sm 5 75 16 md 2 75 18 md 5 75 16

sm 18 9 17 sm 5 9 17 md 2 9 18 md 5 9 16

sm 18 95 19 sm 5 95 18 md 2 95 18 md 5 95 17

sm 18 97 19 sm 5 97 18 md 2 97 18 md 5 97 17

sm 18 99 20 sm 5 99 19 md 2 99 19 md 5 99 19

sm 18 995 22 sm 5 995 20 md 2 995 21 md 5 995 20

sm 18 999 25 sm 5 999 23 md 2 999 26 md 5 999 23

sm 18 9995 26 sm 5 9995 24 md 2 9995 31 md 5 9995 24

sm 18 9999 30 sm 5 9999 28 md 2 9999 43 md 5 9999 27

sm 19 14 md 1 15 sm2 1 18 md 4 17

sm 19 1 14 md 1 1 16 sm2 1 1 18 md 4 1 17

sm 19 5 15 md 1 5 17 sm2 1 5 23 md 4 5 17

sm 19 75 16 md 1 75 16 sm2 1 75 19 md 4 75 18

sm 19 9 17 md 1 9 18 sm2 1 9 28 md 4 9 17

sm 19 95 17 md 1 95 19 sm2 1 95 29 md 4 95 18

sm 19 97 18 md 1 97 21 sm2 1 97 28 md 4 97 20

sm 19 99 19 md 1 99 23 sm2 1 99 29 md 4 99 22

sm 19 995 20 md 1 995 22 sm2 1 995 31 md 4 995 25

sm 19 999 21 md 1 999 25 sm2 1 999 34 md 4 999 30

sm 19 9995 22 md 1 9995 27 sm2 1 9995 36 md 4 9995 32

sm 19 9999 24 md 1 9999 29 sm2 1 9999 38 md 4 9999 32

sm2 3 10 lg 1 11 md 3 15 md 6 14

sm2 3 1 10 lg 1 1 11 md 3 1 15 md 6 1 14

sm2 3 5 11 lg 1 5 12 md 3 5 15 md 6 5 15

sm2 3 75 13 lg 1 75 12 md 3 75 16 md 6 75 14

sm2 3 9 15 lg 1 9 13 md 3 9 17 md 6 9 15

sm2 3 95 15 lg 1 95 13 md 3 95 16 md 6 95 15

sm2 3 97 17 lg 1 97 14 md 3 97 16 md 6 97 16

sm2 3 99 17 lg 1 99 14 md 3 99 18 md 6 99 17

sm2 3 995 19 lg 1 995 15 md 3 995 20 md 6 995 17

sm2 3 999 22 lg 1 999 17 md 3 999 23 md 6 999 20

sm2 3 9995 24 lg 1 9995 19 md 3 9995 24 md 6 9995 22

sm2 3 9999 26 lg 1 9999 20 md 3 9999 28 md 6 9999 25
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Figure 1: Scatter plot of log(C̄) and SeDuMi iterations for 144 SOCP test

problem instances.

such a striking linear dependence.

5 Correlation of SeDuMi Iterations and Geo-

metric Measure of Solution Size and Initial

Infeasibility

In this section we analyze the correlation between SeDuMi iterations and a

geometric measure of solution size and starting point infeasibility presented in

[5]. We first summarize this theory, for details see [5]. The solution size measure

stems from using a natural norm ‖ · ‖ associated with the starting point cone

variables (x(0), z(0), τ (0), κ(0)) of the HSD embedding model. SeDuMi uses the
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Figure 2: Line plot of log(C̄) and SeDuMi iterations for each of the 12 groups

of SOCP test problem instances.

Table 4: Linear regression output of SeDuMi iterations as a function of log(C̄),

for each of the 12 groups of SOCP problem instances.

Problem Problem

Instance R2 Slope Intercept Instance R2 Slope Intercept

sm 18 95.6% 3.4 -1.1 md 2 80.3% 5.8 -10.7

sm 19 99.3% 2.4 5.5 sm2 1 89.6% 5.2 -3.6

sm2 3 98.9% 4.0 1.3 md 3 90.0% 3.1 -1.6

sm 5 94.9% 3.0 0.5 md 5 93.2% 3.2 -4.5

md 1 97.5% 3.5 0.8 md 4 91.1% 4.7 -12.9

lg 1 95.8% 2.2 4.6 md 6 82.7% 2.8 -4.0
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following starting point:

x(0) = (1 + ‖b‖∞)ψ

y(0) = 0

z(0) = (1 + ‖c‖∞)ψ

τ (0) = 1

κ(0) = (1 + ‖b‖∞)(1 + ‖c‖∞)

θ(0) =
√

(1 + ‖b‖∞)(1 + ‖c‖∞)(ψT ψ + 1)

(22)

where ψ = [ψl
1, . . . , ψ

l
N l , ψ

q
1, . . . , ψ

q
Nq ], ψl

i = 1 for each xl
i, i = 1, . . . , N l, and

ψq
i = [

√
2; 0; . . . ; 0] for each xq

i , i = 1, . . . , Nq. Note that ψT ψ = ϑ where ϑ

is the complexity value of the cone of the primal variables, see (4). According

to [5], the natural norm associated with this starting point for the HSD cone

variables is:

‖(x, z, τ, κ)‖ := (1 + ‖c‖∞)
(∑N l

i=1 |xl
i| +

√
2

∑Nq

i=1 max{|x0
i |, ‖x̄i‖2}

)
+ (1 + ‖b‖∞)

(∑N l

i=1 |zl
i| +

√
2

∑Nq

i=1 max{|z0
i |, ‖z̄i‖2}

)
+ (1 + ‖b‖∞)(1 + ‖c‖∞)|τ | + |κ| .

(23)

This norm then can be broken up into different norms for the different variables,

in particular

‖x‖ := (1 + ‖c‖∞)

⎛
⎝ N l∑

i=1

|xl
i| +

√
2

Nq∑
i=1

max{|x0
i |, ‖x̄i‖2}

⎞
⎠

and

‖z‖ := (1 + ‖b‖∞)

⎛
⎝ N l∑

i=1

|zl
i| +

√
2

Nq∑
i=1

max{|z0
i |, ‖z̄i‖2}

⎞
⎠

which conveniently specialize to

‖x‖ = (z(0))T x and ‖z‖ = (x(0))T z

for x � 0, z � 0. Let RP
ε and RD

ε denote the maximum norm among ε-optimal

solutions of (P) and (D), respectively, measured among the cone variables x and
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z, respectively:

RP
ε := max ‖x‖ := (1 + ‖c‖∞)(

∑N l

i=1 xl
i +

√
2

∑Nq

i=1 x0
i )

s.t. Ax = b, cT x ≤ v∗ + ε

x � 0

(24)

RD
ε := max ‖z‖ := (1 + ‖b‖∞)(

∑N l

i=1 zl
i +

√
2

∑Nq

i=1 z0
i )

s.t. AT y + z − c = 0, bT y ≥ w∗ − ε

z � 0

(25)

where v∗ (w∗) is the primal (dual) optimal value of the SOCP problem. Let Rε

be the sum of the maximum norms of the primal and dual ε-optimal solutions:

Rε := RP
ε + RD

ε .

Recalling SeDuMi’s stopping criterion (7), let S denote the following quantity:

S :=
(Rε + κ(0))

ᾱ

(
2

‖b̄‖∞
1 + ‖b‖∞ + 2

‖c̄‖∞
1 + ‖c‖∞ +

(ḡ − κ(f)

θ(f) )+

max{|cT x̄|, |bT ȳ|, 0.001 × τ}

)
,

where κ(f), θ(f) denote the values of κ, θ in the final iteration of SeDuMi. Then

the analysis in [5] indicates that the number of iterations T of SeDuMi is ap-

proximately:

T ≈ log(S) + | log(rmax)|
| log(β)| (26)

where β = T

√
θ(f)

θ(0) is the (geometric) average decrease in θ over all iterations.

The above approximation is valid under mild assumptions, see [5] for details.

Notice in (26) that T will be positively correlated with log(S) to the extent

that | log(β)| is relatively constant. In order to test the correlation between

T and log(S), we computed Rε and log(S) for the 144 test problem instances,

whose values are shown in Table 5. A scatter plot of the values of log(S) and

the SeDuMi iterations T (from Table 3) is shown in Figure 3. Like the analysis

of the condition measure C(d) shown in Figure 1, Figure 3 shows a definitive

upward trend in SeDuMi iterations for increasing values of log(S), but with
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much more variance, particularly when comparing relatively smaller values of

log(S) and log(C̄). We computed the sample correlation R for the 144 values

of log(S) and SeDuMi iterations, which yielded a sample correlation R = 0.600,

indicating a modest linear relationship between these two values.

Table 5: Rε and log(S) for 144 SOCP Problem Instances.

Problem Rε log(S) Problem Rε log(S) Problem Rε log(S)

sm 18 1.8E+4 1.0 md 1 1.3E+3 0.5 md 3 5.7E+1 0.5

sm 18 1 1.8E+4 1.0 md 1 1 1.3E+3 0.5 md 3 1 5.7E+1 0.5

sm 18 5 1.8E+4 1.0 md 1 5 1.5E+3 0.6 md 3 5 5.8E+1 0.5

sm 18 75 1.9E+4 1.1 md 1 75 1.9E+3 0.7 md 3 75 6.3E+1 0.6

sm 18 9 2.2E+4 1.1 md 1 9 2.5E+3 0.8 md 3 9 7.3E+1 0.7

sm 18 95 2.4E+4 1.2 md 1 95 3.7E+3 0.9 md 3 95 8.3E+1 0.7

sm 18 97 2.7E+4 1.2 md 1 97 5.3E+3 1.1 md 3 97 9.3E+1 0.8

sm 18 99 3.4E+4 1.3 md 1 99 8.2E+3 1.3 md 3 99 1.3E+2 0.9

sm 18 995 4.5E+4 1.4 md 1 995 1.1E+4 1.4 md 3 995 1.6E+2 1.1

sm 18 999 8.6E+4 1.7 md 1 999 2.3E+4 1.7 md 3 999 3.2E+2 1.5

sm 18 9995 1.2E+5 1.8 md 1 9995 3.1E+4 1.9 md 3 9995 4.3E+2 1.7

sm 18 9999 2.4E+5 2.2 md 1 9999 7.0E+4 2.3 md 3 9999 9.1E+2 2.2

sm 19 8.9E+2 0.5 lg 1 2.1E+1 0.3 md 5 1.3E+2 0.6

sm 19 1 8.9E+2 0.5 lg 1 1 2.1E+1 0.3 md 5 1 1.3E+2 0.6

sm 19 5 9.3E+2 0.6 lg 1 5 2.6E+1 0.4 md 5 5 1.3E+2 0.6

sm 19 75 1.1E+3 0.6 lg 1 75 3.5E+1 0.5 md 5 75 1.5E+2 0.6

sm 19 9 1.7E+3 0.8 lg 1 9 5.2E+1 0.6 md 5 9 1.6E+2 0.7

sm 19 95 2.4E+3 0.9 lg 1 95 7.0E+1 0.8 md 5 95 1.8E+2 0.8

sm 19 97 3.2E+3 1.1 lg 1 97 8.7E+1 0.9 md 5 97 2.0E+2 0.8

sm 19 99 6.5E+3 1.4 lg 1 99 1.4E+2 1.1 md 5 99 2.7E+2 1.0

sm 19 995 9.7E+3 1.6 lg 1 995 2.0E+2 1.3 md 5 995 3.4E+2 1.1

sm 19 999 2.5E+4 2.1 lg 1 999 4.3E+2 1.5 md 5 999 6.1E+2 1.4

sm 19 9995 3.7E+4 2.3 lg 1 9995 6.0E+2 1.6 md 5 9995 8.1E+2 1.6

sm 19 9999 8.4E+4 2.9 lg 1 9999 1.3E+3 1.8 md 5 9999 1.7E+3 2.1

sm2 3 4.6E+1 0.6 md 2 1.7E+3 1.0 md 4 6.5E+1 0.5

sm2 3 1 4.6E+1 0.6 md 2 1 1.7E+3 1.0 md 4 1 6.5E+1 0.5

sm2 3 5 4.6E+1 0.7 md 2 5 1.7E+3 1.0 md 4 5 6.7E+1 0.5

sm2 3 75 1.3E+2 1.2 md 2 75 1.8E+3 1.0 md 4 75 7.1E+1 0.5

sm2 3 9 1.3E+2 1.2 md 2 9 1.8E+3 1.0 md 4 9 8.0E+1 0.5

sm2 3 95 1.4E+2 1.2 md 2 95 1.8E+3 1.0 md 4 95 9.4E+1 0.6
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Problem Rε log(S) Problem Rε log(S) Problem Rε log(S)

sm2 3 97 1.8E+2 1.4 md 2 97 1.9E+3 1.0 md 4 97 1.0E+2 0.7

sm2 3 99 3.1E+2 1.8 md 2 99 2.1E+3 1.1 md 4 99 1.4E+2 0.8

sm2 3 995 4.3E+2 2.0 md 2 995 2.3E+3 1.1 md 4 995 1.7E+2 0.8

sm2 3 999 9.6E+2 2.6 md 2 999 3.3E+3 1.3 md 4 999 3.1E+2 1.1

sm2 3 9995 1.4E+3 2.7 md 2 9995 4.1E+3 1.4 md 4 9995 3.9E+2 1.3

sm2 3 9999 3.0E+3 2.2 md 2 9999 7.2E+3 1.6 md 4 9999 7.1E+2 1.6

sm 5 1.9E+4 1.0 sm2 1 4.4E+2 0.7 md 6 2.3E+2 0.7

sm 5 1 1.9E+4 1.0 sm2 1 1 4.4E+2 0.7 md 6 1 2.3E+2 0.7

sm 5 5 1.9E+4 1.0 sm2 1 5 4.5E+2 0.7 md 6 5 2.4E+2 0.7

sm 5 75 1.9E+4 1.0 sm2 1 75 4.7E+2 0.7 md 6 75 2.5E+2 0.7

sm 5 9 2.1E+4 1.1 sm2 1 9 6.3E+2 0.9 md 6 9 2.8E+2 0.8

sm 5 95 2.3E+4 1.1 sm2 1 95 7.4E+2 0.9 md 6 95 3.1E+2 0.8

sm 5 97 2.6E+4 1.2 sm2 1 97 9.0E+2 1.0 md 6 97 3.4E+2 0.9

sm 5 99 3.3E+4 1.3 sm2 1 99 1.3E+3 1.2 md 6 99 4.4E+2 1.0

sm 5 995 4.0E+4 1.3 sm2 1 995 1.5E+3 1.2 md 6 995 5.4E+2 1.1

sm 5 999 6.9E+4 1.6 sm2 1 999 2.0E+3 1.3 md 6 999 9.6E+2 1.5

sm 5 9995 8.9E+4 1.7 sm2 1 9995 2.6E+3 1.5 md 6 9995 1.3E+3 1.7

sm 5 9999 1.8E+5 2.0 sm2 1 9999 3.7E+3 1.6 md 6 9999 2.6E+3 2.2

Figure 4 shows line plots of log(S) and SeDuMi iterations for each of the

12 groups of problem instances. This figure shows that within each problem

group, there is a definite linear relationship between these two quantities. We

ran simple linear regression models for each of the 12 sets of 12 data pairs, the

results of which are shown in Table 6. Notice that the regression R2 for each

of the 12 regressions is at least 0.875, with half of these having R2 ≥ 0.981.

However, as Figure 3 showed, when taken as a whole, the 144 pairs do not have

such a definitive linear dependence.

The absence of a very strong linear correlation between SeDuMi iterations

and log(S) indicates from (26) that β, which is the average decrease in the

objective function (and duality gap) over all iterations, cannot be approximately

constant over the test problem instances. Table 7 shows the values of β for all

144 test problem instances. Notice that in general one observes within each of
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Figure 3: Scatter plot of log(S) and SeDuMi iterations for 144 test problem

instances.
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Figure 4: Line plot of log(S) and SeDuMi iterations for each of the 12 groups

of SOCP test problem instances.
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Table 6: Linear regression output of SeDuMi iterations as a function of log(S),

for each of the 12 groups of SOCP problem instances.

Problem Problem

Instance R2 Slope Intercept Instance R2 Slope Intercept

sm 18 98.6% 11.9 4.4 md 2 98.8% 41.0 -24.5

sm 19 95.0% 4.0 13.0 sm2 1 87.5% 20.2 6.4

sm2 3 89.1% 6.8 6.3 md 3 98.4% 7.7 11.0

sm 5 98.1% 12.2 3.5 md 5 98.3% 8.1 10.6

md 1 97.9% 7.9 -9.0 md 4 93.7% 15.6 10.0

lg 1 92.4% 5.3 9.4 md 6 98.7% 7.0 9.6

the 12 groups that β increases as the condition measure C(d) increases. Figure 5

shows line plots of log(C̄) and | log(β)|, which confirms the intuition that | log(β)|
is decreasing in log(C̄). This figure indicates that for the HSD embedding IPM

algorithm SeDuMi, there is at least a loosely defined relationship between the

condition number and the rate of convergence of the algorithm.

Table 7: (Geometric) Average Decrease in the Duality Gap β for all 144 test

problem instances.

Problem β Problem β Problem β Problem β

sm 18 0.22 sm 5 0.22 md 2 0.23 md 5 0.22

sm 18 1 0.21 sm 5 1 0.21 md 2 1 0.21 md 5 1 0.22

sm 18 5 0.22 sm 5 5 0.19 md 2 5 0.22 md 5 5 0.21

sm 18 75 0.23 sm 5 75 0.23 md 2 75 0.26 md 5 75 0.23

sm 18 9 0.24 sm 5 9 0.26 md 2 9 0.27 md 5 9 0.24

sm 18 95 0.27 sm 5 95 0.26 md 2 95 0.25 md 5 95 0.24

sm 18 97 0.28 sm 5 97 0.27 md 2 97 0.25 md 5 97 0.24

sm 18 99 0.29 sm 5 99 0.29 md 2 99 0.27 md 5 99 0.27

sm 18 995 0.34 sm 5 995 0.30 md 2 995 0.29 md 5 995 0.27

sm 18 999 0.37 sm 5 999 0.34 md 2 999 0.38 md 5 999 0.31

sm 18 9995 0.37 sm 5 9995 0.35 md 2 9995 0.40 md 5 9995 0.32
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Problem β Problem β Problem β Problem β

sm 18 9999 0.39 sm 5 9999 0.38 md 2 9999 0.55 md 5 9999 0.37

sm 19 0.18 md 1 0.22 sm2 1 0.29 md 4 0.27

sm 19 1 0.18 md 1 1 0.24 sm2 1 1 0.26 md 4 1 0.27

sm 19 5 0.21 md 1 5 0.26 sm2 1 5 0.36 md 4 5 0.28

sm 19 75 0.21 md 1 75 0.24 sm2 1 75 0.28 md 4 75 0.29

sm 19 9 0.25 md 1 9 0.29 sm2 1 9 0.44 md 4 9 0.26

sm 19 95 0.24 md 1 95 0.28 sm2 1 95 0.45 md 4 95 0.30

sm 19 97 0.27 md 1 97 0.33 sm2 1 97 0.44 md 4 97 0.31

sm 19 99 0.27 md 1 99 0.32 sm2 1 99 0.45 md 4 99 0.35

sm 19 995 0.28 md 1 995 0.32 sm2 1 995 0.47 md 4 995 0.37

sm 19 999 0.29 md 1 999 0.35 sm2 1 999 0.50 md 4 999 0.42

sm 19 9995 0.30 md 1 9995 0.36 sm2 1 9995 0.50 md 4 9995 0.46

sm 19 9999 0.31 md 1 9999 0.40 sm2 1 9999 0.49 md 4 9999 0.46

sm2 3 0.06 lg 1 0.14 md 3 0.23 md 6 0.20

sm2 3 1 0.06 lg 1 1 0.14 md 3 1 0.22 md 6 1 0.20

sm2 3 5 0.10 lg 1 5 0.16 md 3 5 0.22 md 6 5 0.19

sm2 3 75 0.14 lg 1 75 0.16 md 3 75 0.24 md 6 75 0.19

sm2 3 9 0.19 lg 1 9 0.17 md 3 9 0.25 md 6 9 0.21

sm2 3 95 0.19 lg 1 95 0.17 md 3 95 0.25 md 6 95 0.21

sm2 3 97 0.24 lg 1 97 0.19 md 3 97 0.24 md 6 97 0.22

sm2 3 99 0.22 lg 1 99 0.17 md 3 99 0.27 md 6 99 0.24

sm2 3 995 0.21 lg 1 995 0.19 md 3 995 0.28 md 6 995 0.24

sm2 3 999 0.26 lg 1 999 0.23 md 3 999 0.31 md 6 999 0.29

sm2 3 9995 0.31 lg 1 9995 0.25 md 3 9995 0.34 md 6 9995 0.29

sm2 3 9999 0.35 lg 1 9999 0.26 md 3 9999 0.36 md 6 9999 0.32

6 Concluding Remarks

Our computational experience indicates that SeDuMi iteration counts and log(C(d))

are fairly highly correlated (sample correlation R = 0.676), whereas SeDuMi it-

eration counts are not quite as highly correlated with the combined measure of

initial infeasbility/optimality residuals S (R = 0.600).
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Figure 5: Line plots of log(C̄) and | log(β)| for each of the 12 groups of SOCP

test problem instances.

The theory of interior-point methods only points to one factor, namely the

complexity value ϑ of the underlying self-concordant barrier for the cone, that

can have a provable influence on the rate of convergence in theory. Yet as

Table 7 and Figure 5 have shown, there is evidence of some systematic effect of

increasingly ill-behaved problems on the average convergence rate of SeDuMi.

We believe that this evidence bears further analysis.
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