Summary Conclusions on Computational
Experience and the Explanatory Value of Condition
Measures for Linear Optimization

Fernando Ordofiez! and Robert M. Freund*
tUSC, Industrial and Systems Engineering Department, Los Angeles, CA
IMIT Soan School of Management, Cambridge, MA

ABSTRACT

The modern theory of condition measures for convex opti-
mization problems was initially developed for convex problems
in the following conic format (CP,) : z, := min,{c'z | Az—
b e Cy,z € Cx}, and several aspects of the theory have now
been extended to handle non-conic formats as well. In this
theory, the (Renegar-) condition measure C'(d) for (CP;) has
been shown to be connected to bounds on a wide variety of
behavioral and computational characteristics of (C Py), from
sizes of optimal solutions to the complexity of algorithms for
solving (C'P,). Herein we test the practical relevance of the
condition measure theory, as applied to linear optimization
problems that one might typically encounter in practice. Using
the NETLIB suite of linear optimization problems as a test
bed, we found that 71% of the NETLIB suite problem instances
have infinite condition measure. In order to examine condition
measures of the problems that are the actual input to a
modern IPM solver, we also computed condition measures
for the NETLIB suite problems after pre-preprocessing by
CPLEX 7.1. Here we found that 19% of the post-processed
problem instances in the NETLIB suite have infinite condition
measure, and that log C(d) of the post-processed problems
is fairly nicely distributed. Furthermore, there is a positive
linear relationship between IPM iterations and log C'(d) of
the post-processed problem instances (significant at the 95%
confidence level), and 42% of the variation in IPM iterations
among the NETLIB suite problem instances is accounted for
by log C(d) of the post-processed problem instances.

I. INTRODUCTION

The modern theory of condition measures for convex opti-
mization problems was initially developed in [22] for problems
in the following conic format:

t

Ze '=min c'z
(CPy) s.t. Az —be Cy D
z e Cx s

*This paper contains substantial material from the full-length paper [16]
“Computational Experience and the Explanatory Value of Condition Measures
for Linear Optimization” by the same authors, which is under review for
possible publication in SAM Journal on Optimization. This research has been
partially supported through the Singapore-MIT Alliance.

where, for concreteness, we consider A to be an m x n real
matrix, b € R™, ¢ € IR™, and Cx C IR™, Cy C IR™ are
closed convex cones, and the data of the problem is the array
d = (A, b, c). We assume that we are given norms ||z|| and ||y||
on IR™ and IR™, respectively, and let ||A|| denote the usual
operator norm; let ||v||« denote the dual norm associated with
the norm ||w|| on IR™ or IR™. We define the norm of the data
instance d = (A, b, ¢) by ||d| := max{||A|l, [B]], llc]l.}.

The theory of condition measures for (CP;) focuses on
three measures — pp(d), pp(d), and C(d), to bound various
behavioral and computational quantities pertaining to (CPy).
The quantity pp(d) is called the “distance to primal infeasi-
bility” and is defined as:

pp(d) == inf{||Ad|| | Xapaa =0},
where X denotes the feasible region of (CPy):
Xg={zeR"| Az —beCy,z € Cx}.

The quantity pp(d) is called the “distance to dual infeasibility”
for the conic dual (CD,) of (CPy):

z* :=max by

(CDy) s.t. c— Aly € C%)
y€eCy .

and is defined similarly to pp(d) but using the dual problem
instead. The quantity C'(d) is called the “condition measure”
or the “condition number” of the problem instance d and is
a (positively) scale-invariant reciprocal of the smallest data
perturbation Ad that will render the perturbed data instance
either primal or dual infeasible:

ldl
min{pr(d), po (@] ®

and a problem is called “ill-posed” if min{pp(d), pp(d)} =
0, equivalently C(d) = oo. These three condition measure
quantities have been shown in theory to be connected to a
wide variety of bounds on behavioral characteristics of (C' Py)
and its dual, including bounds on sizes of feasible solutions,
bounds on sizes of optimal solutions, bounds on optimal
objective values, bounds on the sizes and aspect ratios of
inscribed balls in the feasible region, bounds on the rate of
deformation of the feasible region under perturbation, bounds

O(d) =

https://core.ac.uk/display/4381357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on changes in optimal objective values under perturbation, and
numerical bounds related to the linear algebra computations of
certain algorithms, see [22], [4], [3], [6]. [7]. [8], [26], [24],
[27], [25], [18], [20]. In the context of interior-point methods
for linear and semidefinite optimization, these same three
condition measures have also been shown to be connected to
various quantities of interest regarding the central trajectory,
see [13] and [14]. The connection of these condition measures
to the complexity of algorithms has been shown in [6], [7],
[23], [1], and [2], and some of the references contained therein.
While this literature has focused almost exclusively on the
conic format of (1), there have been some attempts to extend
the theory to convex problems in structured non-conic formats,
see Filipowski [3], Pefia [19] and [17], and [15].

Given the theoretical importance of these many results, it
is natural to ask what are typical values of these condition
measures that arise in practice? Are such problems typically
well-posed or ill-posed?, and how are the condition measures
of such problems distributed? We begin to answer these ques-
tion in this paper, where we compute and analyze these three
condition measures for the NETLIB suite of industrial and
academic LP problems. We present computational results that
indicate that 71% of the NETLIB suite of linear optimization
problem instances are ill-posed, i.e., have infinite condition
measure, see Section I11-A.

In the case of modern interior-point-method (IPM) algo-
rithms for linear optimization, the number of IPM iterations
needed to solve a linear optimization instance has been
observed to vary from 10 to 100 iterations, over a huge
range of problem sizes, see [10], for example. Using the
condition-measure model for complexity analysis, one can
bound the IPM iterations by O(y/nlog(C(d)+---)) for linear
optimization in standard form, where the other terms in the
bound are of a more technical nature, see [23] for details.
(Of course, the IPM algorithms that are used in practice
are different from the IPM algorithms that are used in the
development of the complexity theory.) A natural question to
ask then is whether the observed variation in the number of
IPM iterations (albeit already small) can be accounted for by
the condition measures of the LP problems that are solved? In
order to answer this question, first note that typical IPM solvers
perform routine pre-processing to modify the LP problem prior
to solving. In order to examine condition measures of the
problems that are the actual input to a modern IPM solver, we
computed condition measures for the NETLIB suite problems
after pre-preprocessing by CPLEX 7.1. We found that 19%
of the post-processed problem instances in the NETLIB suite
have infinite condition measure, and that log C'(d) of the post-
processed problems is fairly nicely distributed, see Section
I11-B. In Section I1I-C, we show that the number of IPM
iterations needed to solve the problems in the NETLIB suite
varies roughly linearly (and monotonically) with log C(d) of
the post-processed problem instances. A simple linear regres-
sion model of IPM iterations as the dependent variable and
log C(d) as the independent variable yields a positive linear
relationship between IPM iterations and log C(d) for the post-

processed problem instances, significant at the 95% confidence
level, with R2 = 0.4160. Therefore, about 42% of the
variation in IPM iterations among the NETLIB suite problems
is accounted for by log C(d) of the problem instances after
pre-processing.

Il. LINEAR PROGRAMMING, GROUND-SET FORMAT, AND
COMPUTATION OF pp(d), pp(d), AND C(d)

In order to attempt to address the issues raised in the previ-
ous section about practical computational experience and the
relevance of condition measures, one can start by computing
the condition measures for a suitably representative set of
linear optimization instances that arise in practice, such as the
NETLIB suite of industrial and academic linear optimization
problems, see [12]. Linear optimization problem instances
arising in practice are typically conveyed in the following

format:)
min, clz

s.t. Ajx <b; ,i €L
Aiflﬁ:bi,iEE
Az >bieG @
zj>1lj, jelp
-Tjguj:jEUB:

where the first three sets of inequalities/equalities are the
“constraints” and the last two sets of inequalities are the lower
and upper bound conditions, and where L, Up C {1,...,n}.
(LP problems in practice might also contain range constraints
of the form “b;; < A;z < b;,,” as well. We ignore this for
now.) By defining C'y to be an appropriate cartesian product
of nonnegative halflines IR, nonpositive halflines — IR, and
the origin {0} and by defining

P:={x|z; > for j€ Lp, x; <ujfor j €U}, (5)

we can naturally consider (4) to be an instance of the following
“ground-set model” format:

t

zi(d) = min c'z
(GPy) st. Az —-beCy (6)
z € P,

where P is called the ground-set. The set P (and the cone
Cy) remains fixed as part of the definition of the problem,
and the description of P is not part of the data d = (4,0, ¢).
Many aspects of the theory of condition measures for conic
convex optimization have been extended to the more general
ground-set model format (6), see [15]. We will use this ground-
set format in our computation and evaluation of condition
measures for LPs that arise in practice. The general set-up for
the development of condition-measure theory for the ground-
set model format is quite similar in thrust to development for
problems in conic form reviewed in Section I. For details of
the extension of condition-measure theory from conic form to
the ground-set model format, see [15].

In [16] a methodology is described for computing pp(d) and
pp(d) and for accurately estimating C'(d). The computational
methodology is premised on the assumption that the norm on
the space of the z variables in IR™ is the L.,-norm, and the

norm on the space of the right-hand-side vector in IR™ is the
Ly-norm. Using this choice of norms, we show in [16] how
to compute pp(d) and pp(d) for linear optimization problems
by solving 2n + 2m LPs of size roughly that of the original
problem. As is discussed in [7], the complexity of computing
pp(d) and pp(d) very much depends on the chosen norms,
with the norms given as above being particularly appropriate
for efficient computation of pp(d) and pp(d).

I1l. COMPUTATIONAL RESULTS ON THE NETLIB SUITE
OF LINEAR OPTIMIZATION PROBLEMS PRIOR TO
PRE-PROCESSING

A. Condition Measures for the NETLIB Suite prior to Pre-
Processing

We chose the NETLIB suite of linear optimization problem
instances as a representative suite of LP problems encoun-
tered in practice, and we computed the condition measures
pp(d),pp(d), and C(d) for problem instances in this suite.
The NETLIB suite is comprised of 98 linear optimization
problem instances from diverse application areas, collected
over a period of many years. While this suite does not
contain any truly large problems by today’s standards, it is
arguably the best publicly available collection of practical
LP problems, and the sizes and diversity of the problems
contained therein seem to be representative of practice. The
sizes of the problem instances in the NETLIB suite range
from 32 variables and 28 constraints to problems with roughly
9,000 variables and 3,000 constraints. 44 of the 98 problems in
the suite have non-zero lower bound constraints and/or upper
bound constraints on the variables, and five problems have
range constraints. We omitted the five problems with range
constraints (boeingl, boeing2, forplan, nesm, seba) for the
purposes of our analysis (range constraints do not naturally fit
into either the conic model or the ground-set model format).
On four of the remaining problems (dfl001, gapl2, gapl5,
stocfor3) our methodology has not yet exhibited convergence
to a solution, and these four problems were omitted as well,
yielding a final sample set of 89 linear optimization problems.
The burden of computing the distances to ill-posedness for
the NETLIB suite via the solution of 2n + 2m LPs obviously
grows with the dimensions of the problem instances. On afiro,
which is a small problem instance (n = 28, m = 32), the total
computation time amounted to only 0.28 seconds of machine
time, whereas for maros-r7 (n = 9,408 and m = 3,136), the
total computation time was 240, 627.59 seconds of machine
time (66.84 hours).

Table | shows summary statistics of the distances to ill-
posedness and the condition measure estimates for the 89
problems, using the methodology for computing pp(d) and
pp(d) and for estimating ||d|| developed in [16]. All linear
programming computation was performed using CPLEX 7.1
(function primopt). As the table shows, 71% (63/89) of the
problems in the NETLIB suite are ill-posed due to either
pp(d) = 0 or pp(d) = 0 or both. Furthermore, notice that
among these 63 ill-posed problems, that almost all of these (61
out of 63) have pp(d) = 0. This means that for 69% (61/89)

of the problems in the NETLIB suite, arbitrarily small changes
in the data will render the primal problem infeasible.

TABLE |
SUMMARY STATISTICSOF DISTANCESTO ILL-POSEDNESSFOR NETLIB
SUITE (PRIOR TO PRE-PROCESSING BY CPLEX 7.1).

pp(d)
0 [Finite | oo || Totals
0 19 41 1 61
pp(d) | Finite 2 24 | 2 28
o0 0 0] 0 0
| Totals [21] 65 3] 89 |

The computational results in Table | have shown that 61
of the 89 LPs in the NETLIB suite are primal ill-posed,
i.e. pp(d) = 0, and so arbitrarily small changes in the data
will render the primal problem infeasible. For feasible LPs,
pp(d) = 0 can happen only if (i) there are linear dependencies
among the equations of the problem instance (4), or (ii) if
there is an implied reverse inequality among the inequalities
and lower and upper bounds of the problem instance. A careful
review of these problems shows that for at least 34% of the
primal ill-posed problem instances (21 of the 61 problems),
there are linear dependencies among the equations of (4).

B. Condition Measures for the NETLIB Suite after Pre-
Processing

Most commercial software packages for solving linear op-
timization problems perform pre-processing heuristics prior to
solving a problem instance. These heuristics typically include
checks for eliminating linearly dependent equations, heuristics
for identifying and eliminating redundant variable lower and
upper bounds, and rules for row and/or column re-scaling, etc.
The purposes of the pre-processing are to reduce the size of
the problem instance by eliminating dependent equations and
redundant inequalities, and to improve numerical computation
and enhance iteration performance by rescaling of rows and/or
columns. The original problem instance is converted to a
post-processed instance by the processing heuristics, and it
is this post-processed instance that is used as input to solution
software. In CPLEX 7.1, the post-processed problem can be
accessed using function prslvwrite. This function writes the
post-processed problem to disk, from where it can be read.

In order to examine condition measures of the problems that
are the actual input to a modern IPM solver, we computed
condition measures for the NETLIB suite problems after pre-
preprocessing by CPLEX 7.1. The processing used was the
default CPLEX pre-processing with the linear dependency
check option activated. Table Il presents some summary statis-
tics of these condition measures. Notice from Table Il that
19% (17/89) of the post-processed problems in the NETLIB
suite are ill-posed. In contrast to the original problems, the
vast majority of post-processed problems have finite condition
measures, as the pre-processing heuristics are very effective at
identifying and correcting many instances of implied reverse
inequalities in addition to finding and eliminating linearly

dependent equations. We also examined the causes of ill-
posedness for the 16 primal ill-posed post-processed problems
in the NETLIB suite; we found that all of the ill-posed
post-processed LP instances have implied reverse inequalities
among the inequalities and/or lower/upper bounds.

TABLE Il
SUMMARY STATISTICSOF DISTANCESTO ILL-POSEDNESSFOR THE
NETLIB SUITE AFTER PRE-PROCESSINGBY CPLEX 7.1.

pp(d)
0 [Finite T oo Totals
0 1 15 0 16
pp(d) | Finite 1 70 2 73
o0 0 0 0 0
| Totals] 2 | 8 2 8 |

Figure 1 presents a histogram of the condition measures
of the post-processed problems. The condition measure of
each problem is represented by the geometric mean of the
upper and lower bound estimates in this histogram. The right-
most column in the figure is used to tally the number of
problems for which C(d) = oo, and is shown to give a more
complete picture of the data. This histogram shows that of
the problems with finite condition measure, log C'(d) is fairly
nicely distributed between 2.6 and 11.0. Of course, when
C(d) = 101, it is increasingly difficult to distinguish between
a finite and non-finite condition measure.

Frequency

1 5 6 9

7 8
log C(d)

Fig. 1. Histogram of Condition Measures for the NETLIB Suite After Pre-
Processing by CPLEX 7.1 (using the geometric mean of the lower and upper
bound estimates of C(d))

C. Condition Measures and the Observed Performance of
Interior-Point Methods on the NETLIB Suite

In the case of modern IPM algorithms for linear opti-
mization, the number of IPM iterations needed to solve a
linear optimization instance has been observed to be fairly
constant over a huge range of problem sizes; for the NETLIB
suite the number of iterations varies between 8 and 48 using
CPLEX 7.1 baropt; for other codes the numbers are a bit
different. Extensive computational experience over the past
15 years has shown that the IPM iterations needed to solve a

linear optimization problem instance vary in the range between
10 — 100 iterations. There is some evidence that the number
of IPM iterations grows roughly as logn on a particular class
of structured problem instances, see for example [9].

The observed performance of modern IPM algorithms is
fortunately superior to the worst-case bounds on IPM iterations
that arise via theoretical complexity analysis. Depending on
the complexity model used, one can bound the number of
IPM iterations from above by /9L, where ¥ is the number
of inequalities plus the number of variables with at least one
bound in the problem instance:

U :=|L| + |G|+ [Lpl + Ul = LN Usl, (V)

and L is the bit-size of a binary encoding of the problem
instance data, see [21] (subtraction of the final term of (7) is
shown in [5]). The bit-size model was a motivating force for
modern polynomial-time LP algorithms, but is viewed today
as somewhat outdated in the context of linear and nonlinear
optimization. Using instead the condition-measure model for
complexity analysis, one can bound the IPM iterations by
O(v91og(C(d) + ---)), where the other terms in the bound
are of a more technical nature, see [23] for details. Of course,
even here one must bear in mind that the IPM algorithms that
are used in practice are different from the IPM algorithms that
are used in the development of the complexity theory.

A natural question to ask is whether the observed variation
in the number of IPM iterations (albeit already small) can
be accounted for by the condition measures of the problem
instances that are the input to the IPM algorithm? The finite
condition measures of the 72 post-processed problems from
the NETLIB suite computed in this study provide a rich set of
data that can be used to address this question. Here the goal
is to assess whether or not condition measures are relevant for
understanding the practical performance of IPM algorithms
(and is not aimed at validating the complexity theory).

In order to assess any relationship between condition mea-
sures and IPM iterations for the NETLIB suite, we first solved
and recorded the IPM iterations for the 89 problems from
the NETLIB suite. The problems were pre-processed with the
linear dependency check option and solved with CPLEX 7.1
function baropt with default parameters. The default settings
use the standard barrier algorithm, include a starting heuristic
that sets the initial dual solution to zero, and a convergence
criteria of a relative complementarity smaller than 10~8.

Figure 2 shows a scatter plot of the number of IPM iterations
taken by CPLEX 7.1 to solve the 89 problems in the NETLIB
suite after pre-processing and log C'(d) of the post-processed
problems. In the figure, we used the geometric mean of the
lower and upper estimates of the condition measure log C(d).
Also, similar to Figure 1, problems with infinite condition
measure are shown in the figure on the far right as a visual
aid. Figure 2 shows that as log C(d) increases, so does the
number of IPM iterations needed to solve the problem (with
exceptions, of course). Perhaps a more accurate summary of
the figure is that if the number of IPM iterations is large, then
the problem will tend to have a large value of log C(d). The

converse of this statement is not supported by the scatter plot:
if a problem has a large value of log C(d), one cannot state
in general that the problem will take a large number of IPM
iterations to solve.

In order to be a bit more definitive, we ran a simple linear
regression with the IPM iterations of the post-processed prob-
lem as the dependent variable and log C(d) as the independent
variable, for the 72 NETLIB problems which have a finite
condition measure after pre-processing. For the purposes of
the regression computation we used the geometric mean of
the lower and upper estimates of the condition measure. The
resulting linear regression equation is:

IPM Iterations = 4.1223 + 1.74901log C(d) ,

with R? = 0.4160. This indicates that 42% of the variation
in IPM iteration counts among the NETLIB suite problems is
accounted for by log C(d). A plot of this regression line is
also shown in Figure 2, where once again the 17 problems
that were ill-posed are shown in the figure on the far right as
a visual aid. Both coefficients of this simple linear regression
are significant at the 95% confidence level, see the regression
statistics shown in [16].

*

IPM lterations
*
EE N

* ok

>k

L L
10 12

s
log C(d)

Fig. 2. Linear regression of IPM iterations and log C(d) for 72 NETLIB
problems with finite condition measure after pre-processing, using CPLEX
7.1 (using the geometric mean of the lower and upper bound estimates of
C(d))

The above regression analysis indicates that log C(d) ac-
counts for 42% of the variation in IPM iteration counts among
the NETLIB suite of linear optimization problems.

We also ran a simple linear regression model of IPM itera-
tions as the dependent variable and v/91og C'(d) of the post-
processed problem instance as the independent variable. This
yielded an inferior regression model, with R? = 0.3021. These
results indicate that log C(d) explains better than v/29 log C (d)
the variation in IPM iteration counts among the NETLIB suite
of linear optimization instances.

We also computed the sample correlation coefficients of
the IPM iterations with the following dimensional mea-
sures for the 72 problems in the NETLIB suite with finite
condition measure of the post-processed problem instance:

TABLE Il
SAMPLE CORRELATIONSFOR 72 NETLIB SUITE PROBLEMS AFTER
PRE-PROCESSINGBY CPLEX 7.1 (USING THE GEOMETRIC MEAN OF THE
LOWER AND UPPER BOUND ESTIMATES OF C(d)).

IPM
iterations | log C(d) | logn | logm | log?d
IPM
iterations 1.000
TogC(d) || 0.645 1.000
logn 0.383 0.217 1.000
logm 0.432 0.371 0.777 | 1.000
log ¥ 0.398 0.224 0.991 | 0.808 | 1.000
N 0.311 0.093 0.909 | 0.669 | 0.918

logm, logn, logd, and /0. The resulting sample correla-
tions are shown in Table Ill. Observe from Table Il that IPM
iterations are better correlated with log C(d) than with any of
the other measures. The closest other measure is logm, for
which R = 0.432, and so a linear regression of IPM iterations
as a function of logm would yield R? = (0.432)% = 0.187,
which is decidedly less than R? = 0.4160 for log C(d). Also,
note from Table Il that both log® and /4 by themselves
are significantly less correlated with the IPM iterations than
log C(d).

1V. SUMMARY CONCLUSIONS

The purpose of this paper has been to gain some compu-
tational experience and to test the practical relevance of con-
dition measures for linear optimization on problem instances
that one might encounter in practice. We used the NETLIB
suite of linear optimization problems as a test bed for condition
measure computation and analysis, and we computed condition
measures for 89 original NETLIB suite problem instances,
as well as for the corresponding problem instances after pre-
processing by CPLEX 7.1. This computation was done using
the ground-set model format of convex optimization, where
the ground-set was defined by the lower and upper bound
constraints on the variables.

A summary of our computational findings is as follows:

1) 71% of the original problem instances in the NETLIB
suite are ill-posed.

2) 69% of the original problem instances in the NETLIB
suite are primal ill-posed, i.e., arbitrarily small data
perturbations will render the primal problem infeasible.
Among these primal ill-posed instances:

o At least 34% of these instances exhibit linearly
dependent equations.

« At least 66% of these instances exhibit implied
reverse inequalities.

3) After routine pre-processing by CPLEX 7.1, only 19%
(17/89) of problem instances are ill-posed. All of the
17 ill-posed instances have implied reverse inequalities
among the inequalities and/or lower/upper bounds.

4) log C(d) of the 72 post-processed problems with finite
condition measure is fairly nicely distributed in the range
from 2.6 — 11.0.

5)

6)

7)

8)

9)

[1]
[2]
[3]
[4]
[5]
[6]
[71

(8]

The number of IPM iterations needed to solve linear op-
timization problem instances are related to the condition
measures of the post-processed problem instances. If the
number of IPM iterations is large for a given problem
instance, then the problem will tend to have a large post-
processed condition measure. However, the converse
of this statement is not supported by computational
experience: if the post-processed problem instance has
a large condition measure, one cannot assert that the
problem instance will need a large number of IPM
iterations to solve.

A simple linear regression model of IPM iterations as the
dependent variable and log C'(d) of the post-processed
problem instance as the independent variable yields a
positive linear relationship between IPM iterations and
log C(d), significant at the 95% confidence level, with
R? = 0.4160. This means that 42% of the variation
in IPM iterations among the NETLIB suite problems is
accounted for by log C'(d).

A simple linear regression model of IPM iterations as
the dependent variable and /9 log C(d) of the post-
processed problem instance as the independent variable
yields an inferior regression model, with R? = 0.3021.
These results indicate that log C(d) explains better than
V9 log C(d) the variation in IPM iteration counts among
the NETLIB suite of linear optimization instances.

The number of IPM iterations correlates better with
log C(d) than with logn, logm, logd, or v/9.

In [16], we show that in controlled perturbations of
problem instances to ill-posed perturbed instances, the
number of IPM iterations of the ill-posed perturbed
instances are larger than for the original instance in
about 68% of the problems studied, significantly larger
in about half of these. However in the other 32% of the
problems studied there was no change or even a slight
decrease in IPM iterations.

REFERENCES

F. Cucker and J. Pefia. A primal-dual algorithm for solving polyhedral
conic systems with a finite-precision machine. Technical report, GSIA,
Carnegie Mellon University, 2001.

M. Epelman and R. M. Freund. A new condition measure, precondition-
ers, and relations between different measures of conditioning for conic
linear systems. SAM Journal on Optimization, 12(3):627-655, 2002.
S. Filipowski. On the complexity of solving sparse symmetric linear
programs specified with approximate data. Mathematics of Operations
Research, 22(4):769-792, 1997.

S. Filipowski. On the complexity of solving feasible linear programs
specified with approximate data. SAM Journal on Optimization,
9(4):1010-1040, 1999.

R. Freund and M. Todd. Barrier functions and interior—point algorithms
for linear programming with zero—, one-, or two-sided bounds on the
variables. Mathematics of Operations Research, 20(2):415-440, 1995.
R. M. Freund and J. R. Vera. Condition-based complexity of convex
optimization in conic linear form via the ellipsoid algorithm. S AM
Journal on Optimization, 10(1):155-176, 1999.

R. M. Freund and J. R. Vera. On the complexity of computing estimates
of condition measures of a conic linear system. Technical Report,
Operations Research Center, MIT, August 1999.

R. M. Freund and J. R. Vera. Some characterizations and properties
of the “distance to ill-posedness” and the condition measure of a conic
linear system. Mathematical Programming, 86(2):225-260, 1999.

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

I. Lustig, R. Marsten, and D. Shanno. The primal dual interior point
method on the cray supercomputer. In T. F. Coleman and Y. Li, editors,
Large-Scale Numerical Optimization, Papers from the Workshop held
at Cornell University, Ithaca, NY, October 1989, volume 46 of SAM
Proceedings in Applied Mathematics, pages 70-80. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, 1990.

I. Lustig, R. Marsten, and D. Shanno. Interior point methods: compu-
tational state of the art. ORSA Journal on Computing, 6:1-14, 1994.
Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms
in Convex Programming, volume 13 of SAM Sudies in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1993.

NETLIB linear programming library. http://www.netlib.org/Ip/.

M. A. Nunez and R. M. Freund. Condition measures and properties of
the central trajectory of a linear program. Mathematical Programming,
83(1):1-28, 1998.

M. A. Nunez and R. M. Freund. Condition-measure bounds on the
behavior of the central trajectory of a semi-definite program. SAM
Journal on Optimization, 11(3):818-836, 2001.

F. Ordofiez. On the Explanatory Value of Condition Numbers for Convex
Optimization: Theoretical Issues and Computational Experience. PhD
thesis, Massachusetts Institute of Technology, 2002. In preparation.

F. Ordéfiez and R. M. Freund. Computational Experience and the
Explanatory Value of of Condition Measures for Linear Optimization.
Technical Report, Operations Research Center, MIT, August 2002.

J. Pefia. A characterization of the distance to infeasibility under struc-
tured perturbations. Working paper, GSIA, Carnegie Mellon University,
2002.

J. Pefia. Computing the distance to infeasibility: theoretical and practical
issues. Technical report, Center for Applied Mathematics, Cornell
University, 1998.

J. Pefia. Understanding the geometry of infeasible perturbations of a
conic linear system. SAM Journal on Optimization, 10(2):534-550,
2000.

J. Pefia and J. Renegar. Computing approximate solutions for convex
conic systems of constraints. Mathematical Programming, 87(3):351-
383, 2000.

J. Renegar. A polynomial-time algorithm, based on Newnton’s method,
for linear programming. Mathematical Programming, 40(1):59-93,
1988.

J. Renegar. Some perturbation theory for linear programming. Mathe-
matical Programming, 65(1):73-91, 1994.

J. Renegar. Linear programming, complexity theory, and elementary
functional analysis. Mathematical Programming, 70(3):279-351, 1995.
J. R. Vera. |lll-posedness and the computation of solutions to linear
programs with approximate data. Technical Report, Cornell University,
May 1992.

J. R. Vera. Ill-Posedness in Mathematical Programming and Problem
Solving with Approximate Data. PhD thesis, Cornell University, 1992.
J. R. Vera. lll-posedness and the complexity of deciding existence of
solutions to linear programs. SAM Journal on Optimization, 6(3):549—
569, 1996.

J. R. Vera. On the complexity of linear programming under finite
precision arithmetic. Mathematical Programming, 80(1):91-123, 1998.

