1,057 research outputs found

    Three fermions with six single particle states can be entangled in two inequivalent ways

    Full text link
    Using a generalization of Cayley's hyperdeterminant as a new measure of tripartite fermionic entanglement we obtain the SLOCC classification of three-fermion systems with six single particle states. A special subclass of such three-fermion systems is shown to have the same properties as the well-known three-qubit ones. Our results can be presented in a unified way using Freudenthal triple systems based on cubic Jordan algebras. For systems with an arbitrary number of fermions and single particle states we propose the Pl\"ucker relations as a sufficient and necessary condition of separability.Comment: 23 pages LATE

    'A landmark in psychiatric progress'? The role of evidence in the rise and fall of insulin coma therapy

    Get PDF
    This paper examines the evidence behind the use and decline of insulin coma therapy as a treatment for schizophrenia and how this was viewed by the psychiatric profession. The paper demonstrates that, from the time of its introduction, there was considerable debate regarding the evidence for insulin treatment, and scepticism about its purported benefits. The randomized trials conducted in the 1950s were the result, rather than the origins, of this debate. Although insulin treatment was subsequently abandoned, it was still regarded as a historic moment in the modernization of psychiatry. Then, as now, evidence does not speak for itself, and insulin continued to be incorporated into the story of psychiatric progress even after it was shown to be ineffective

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change

    A formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces

    Get PDF
    Let G/KG/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of GG sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of GG. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a quaternion-K\"{a}hler structure

    Magic Supergravities, N= 8 and Black Hole Composites

    Get PDF
    We present explicit U-duality invariants for the R, C, Q, O$ (real, complex, quaternionic and octonionic) magic supergravities in four and five dimensions using complex forms with a reality condition. From these invariants we derive an explicit entropy function and corresponding stabilization equations which we use to exhibit stationary multi-center 1/2 BPS solutions of these N=2 d=4 theories, starting with the octonionic one with E_{7(-25)} duality symmetry. We generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4 supergravity, using the consistent truncation to the quaternionic magic N=2 supergravity. We present a general solution of non-BPS attractor equations of the STU truncation of magic models. We finish with a discussion of the BPS-non-BPS relations and attractors in N=2 versus N= 5, 6, 8.Comment: 33 pages, references added plus brief outline at end of introductio

    Geometric scaling in high-energy QCD at nonzero momentum transfer

    Full text link
    We show how one can obtain geometric scaling properties from the Balitsky-Kovchegov (BK) equation. We start by explaining how, this property arises for the b-independent BK equation. We show that it is possible to extend this model to the full BK equation including momentum transfer. The saturation scale behaves like max(q,Q_T) where q is the momentum transfer and Q_T a typical scale of the target.Comment: 4 pages, 2 figures. Talk given by G. Soyez at the "Rencontres de Moriond", 12-19 March 2005, La Thuile, Ital

    Common Representation of Information Flows for Dynamic Coalitions

    Full text link
    We propose a formal foundation for reasoning about access control policies within a Dynamic Coalition, defining an abstraction over existing access control models and providing mechanisms for translation of those models into information-flow domain. The abstracted information-flow domain model, called a Common Representation, can then be used for defining a way to control the evolution of Dynamic Coalitions with respect to information flow

    Fundamental Weights, Permutation Weights and Weyl Character Formula

    Full text link
    For a finite Lie algebra GNG_N of rank N, the Weyl orbits W(Λ++)W(\Lambda^{++}) of strictly dominant weights Λ++\Lambda^{++} contain dimW(GN)dimW(G_N) number of weights where dimW(GN)dimW(G_N) is the dimension of its Weyl group W(GN)W(G_N). For any W(Λ++)W(\Lambda^{++}), there is a very peculiar subset (Λ++)\wp(\Lambda^{++}) for which we always have dim(Λ++)=dimW(GN)/dimW(AN1). dim\wp(\Lambda^{++})=dimW(G_N)/dimW(A_{N-1}) . For any dominant weight Λ+ \Lambda^+ , the elements of (Λ+)\wp(\Lambda^+) are called {\bf Permutation Weights}. It is shown that there is a one-to-one correspondence between elements of (Λ++)\wp(\Lambda^{++}) and (ρ)\wp(\rho) where ρ\rho is the Weyl vector of GNG_N. The concept of signature factor which enters in Weyl character formula can be relaxed in such a way that signatures are preserved under this one-to-one correspondence in the sense that corresponding permutation weights have the same signature. Once the permutation weights and their signatures are specified for a dominant Λ+\Lambda^+, calculation of the character ChR(Λ+)ChR(\Lambda^+) for irreducible representation R(Λ+)R(\Lambda^+) will then be provided by ANA_N multiplicity rules governing generalized Schur functions. The main idea is again to express everything in terms of the so-called {\bf Fundamental Weights} with which we obtain a quite relevant specialization in applications of Weyl character formula.Comment: 6 pages, no figures, TeX, as will appear in Journal of Physics A:Mathematical and Genera
    corecore