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A FORMULA FOR THE FIRST EIGENVALUE OF THE DIRAC

OPERATOR ON COMPACT SPIN SYMMETRIC SPACES

JEAN-LOUIS MILHORAT

Abstract. Let G/K be a simply connected spin compact inner irreducible
symmetric space, endowed with the metric induced by the Killing form of G

sign-changed. We give a formula for the square of the first eigenvalue of the
Dirac operator in terms of a root system of G. As an example of application, we
give the list of the first eigenvalues for the spin compact irreducible symmetric
spaces endowed with a quaternion-Kähler structure.

1. Introduction

Let G/K be a compact, simply-connected, n-dimensional irreducible symmetric
space with G compact and simply-connected, endowed with the metric induced by
the Killing form of G sign-changed. Assume that G and K have same rank and
that G/K has a spin structure. In a previous paper, cf. [Mil04], we proved that
the first eigenvalue λ of the Dirac operator verifies

(1) λ2 = 2 min
1≤k≤p

‖βk‖
2 + n/8 ,

where βk, k = 1, . . . , p, are the K-dominant weights occurring in the decomposition
into irreducible components of the spin representation under the action of K, and
where ‖ · ‖ is the norm associated to the scalar product induced by the Killing form
of G.
The proof was based on a lemma of R. Parthasarathy in [Par71], which allows to
express the result in the following way.
Let T be a fixed common maximal torus of G and K. Let Φ be the set of non-zero
roots of G with respect to T . Let Φ+

G be the set of positive roots of G, Φ+
K be the

set of positive roots of K, with respect to a fixed lexicographic ordering in Φ. Let
δG, (resp. δK) be the half-sum of the positive roots of G, (resp. K). Then the
square of the first eigenvalue of the Dirac operator is given by

(2) λ2 = 2 min
w∈W

‖w · δG − δK‖2 + n/8 ,

where W is the subset of the Weyl group WG defined by

(3) W := {w ∈WG ; w · Φ+
G ⊃ Φ+

K} .

In order to avoid the determination of the subset W for applications, we prove in
the following that the square of the first eigenvalue of the Dirac operator is indeed
given by

(4) λ2 = 2 min
w∈WG

‖w · δG − δK‖2 + n/8 .
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We then give a different expression to use the formula for explicit computations.
We obtain

(5) λ2 = 2 ‖δG − δK‖2 + 4
∑

θ∈Λ

< θ, δK > +n/8 ,

where Λ is the set
Λ := {θ ∈ Φ+

G ; < θ, δK > < 0} .

As an example of application of the above formula, we obtain the list of the first
eigenvalues of the Dirac operator for the spin compact irreducible symmetric spaces
endowed with a quaternion-Kähler structure. By definition, a Riemannian manifold
has a quaternion-Kähler structure if its holonomy group is contained in the group
SpmSp1. In [Wol65], J. Wolf gave the following classification of compact quaternion-
Kähler symmetric spaces:

G K G/K dim G/K Spin structure
(cf. [CG88])

Spm+1 Spm × Sp1 Quaternionic 4m (m ≥ 1) Yes (unique)
projective

space HPm

SUm+2 S(Um × U2) Grassmannian 4m (m ≥ 1) iff m even
Gr2(C

m+2) unique in that case
Spinm+4 SpinmSpin4 Grassmannian 4m (m ≥ 3) iff m even,

G̃r4(R
m+4) unique in that case

G2 SO4 8 Yes (unique)

F4 Sp3SU2 28 No

E6 SU6SU2 40 Yes (unique)

E7 Spin12SU2 64 Yes (unique)

E8 E7SU2 112 Yes (unique)

Note furthermore that all the symmetric spaces in that list are “inner”.
Endowing each symmetric space with the metric induced by the Killing form of G
sign-changed, we obtain the following table
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G/K Square of the first eigenvalue of D

HPn = Spm+1/(Spm × Sp1)
m+ 3

m+ 2

m

2
=
m+ 3

m+ 2

Scal

4

Gr2(C
m+2) = SUm+2/S(Um × U2)

m+ 4

m+ 2

m

2
=
m+ 4

m+ 2

Scal

4
(m even)

G̃r4(R
m+4) = Spinm+4/SpinmSpin4

m2 + 6m− 4

m(m+ 2)

m

2
=
m2 + 6m− 4

m(m+ 2)

Scal

4
(m even)

G2/SO4
3

2
=

3

2

Scal

4

E6/(SU6SU2)
41

6
=

41

30

Scal

4

E7/(Spin12SU2)
95

9
=

95

72

Scal

4

E8/(E7SU2)
269

15
=

269

210

Scal

4

TABLE I

The result was already known for quaternionic projective spaces HPn, [Mil92],
for the Grassmannians Gr2(C

m+2), [Mil98], and for the symmetric space G2/SO4,
[See99]. Up to our knowledge, the other results are new.

2. Proof of formula (4)

With the notations of the introduction, and since the scalar product is WG-
invariant, one has for any w ∈WG

(6) ‖w · δG − δK‖2 = ‖δG‖
2 + ‖δK‖2 − 2 < w · δG, δK > ,

hence

min
w∈W

‖w · δG − δK‖2 = ‖δG‖
2 + ‖δK‖2 − 2 max

w∈W
< w · δG, δK >, ,

and

min
w∈WG

‖w · δG − δK‖2 = ‖δG‖
2 + ‖δK‖2 − 2 max

w∈WG

< w · δG, δK >, .
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So we have to prove that

(7) max
w∈W

< w · δG, δK >= max
w∈WG

< w · δG, δK > .

Let

(8) ΠG := {θ1, . . . , θr} ⊂ Φ+
G ,

be the set of G-simple roots and let

(9) ΠK := {θ′1, . . . , θ
′
l} ⊂ Φ+

K ,

be the set of K-simple roots.
Let w0 ∈ WG such that

(10) < w0 · δG, δK >= max
w∈WG

< w · δG, δK > .

Suppose that w0 /∈ W . Then we claim that there exists a K-simple root θ′i such that
w−1

0 ·θ′i /∈ Φ+
G. Otherwise, if for any K-simple root θ′i, w

−1
0 ·θ′i ∈ Φ+

G, then since any
K-positive root is a linear combination with non-negative coefficients of K-simple
roots, we would have ∀θ′ ∈ Φ+

K , w−1
0 · θ′ ∈ Φ+

G, contradicting the assumption made
on w0.
Now let σ′

i be the reflection across the hyperplane θ′i
⊥

. Since σ′
i · δK = δK − θ′i,

(cf. for instance Corollary of Lemma B, §10 .3 in [Hum72]), one gets by the WG-
invariance of the scalar product

< σ′
iw0 · δG, δK > =< w0 · δG, σ

′
i · δK >=< w0 · δG, δK − θ′i >

=< w0 · δG, δK > − < δG, w
−1
0 · θ′i > .

But since w−1
0 · θ′i is a negative root of G, one has

w−1
0 · θ′i = −

∑
kj θj , kj ∈ N .

Since for any G-simple root θj , σj · δG = δG − θj , where σj is the reflection across

the hyperplane θj
⊥, one has < θj , δG >= 2 < θj , θj > > 0, so

− < δG, w
−1
0 · θ′i >=

∑
kj < δG, θj > > 0 ,

hence

< σ′
iw0 · δG, δK > > < w0 · δG, δK > ,

but that is in contradiction with the definition (10) of w0, hence w0 ∈W and

max
w∈WG

< w·δG, δK >=< w0 ·δG, δK >≤ max
w∈W

< w·δG, δK >≤ max
w∈WG

< w·δG, δK > ,

hence the result.

3. Proof of formula (5)

In order to obtain the formula we will use the following result

Lemma 3.1. For any element w of the Weyl group WG

w · δG = δG −
∑

θ∈Φ+

G

kθ θ , kθ = 0 or 1 .
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Proof. Let w ∈WG. With the same notations as in the above proof, we write w in
reduced form

(11) w = σi1 · · ·σik
,

where σi is the reflection across the hyperplane θ⊥i , θi ∈ ΠG, and k is minimal.
Since σik

· δG = δG − θik
, one has

w · δG = σi1 · · ·σik−1
(σik

· δG) = σi1 · · ·σik−1
(δG) − σi1 · · ·σik−1

(θik
) .

Now, since the expression of w is reduced, w(θik
) is a negative root, cf. for instance

corollary of Lemma C, § 10.3 in [Hum72]. But w(θik
) = −σi1 · · ·σik−1

(θik
), hence

σi1 · · ·σik−1
(θik

) is a positive root.
Now the element σi1 · · ·σik−1

∈ WG is written in reduced form, otherwise the
expression (11) of w would not be reduced. Hence we may conclude as above that

σi1 · · ·σik−1
(δG) = σi1 · · ·σik−2

(δG) − σi1 · · ·σik−2
(θik−1

) ,

where σi1 · · ·σik−2
(θik−1

) is a positive root.
Proceeding inductively we get

w · δG = δG −
∑

θ∈Φ+

G

kθ θ , kθ ∈ N .

In order to conclude, we have to prove that if a G-positive root θ appears in the
above sum, then it appears only once.
Suppose that a G-positive root appears at least twice in the above sum, then there
exist two integers p and q, 1 ≤ p < q ≤ k − 1 such that

σi1 · · ·σip
(θip+1

) = σi1 · · ·σiq
(θiq+1

) .

applying σip+1
σip

· · ·σi1 to the two members of the above equation, we get
{
−θip+1

= σip+2
· · ·σiq

(θiq+1
) , if p+ 1 < q,

−θiq
= θiq+1

, if p+ 1 = q.

So we get a contradiction, even in the first case, since σip+2
· · ·σiq

σiq+1
∈ WG

is expressed in reduced form (otherwise the expression (11) of w would not be
reduced), hence σip+2

· · ·σiq
(θiq+1

) is a positive root. �

From the above result we deduce

Lemma 3.2. Let Λ be the set

(12) Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} .

One has
max

w∈WG

< w · δG, δK >=< δG, δK > −
∑

θ∈Λ

< θ, δK > ,

(setting
∑

θ∈Λ < θ, δK >= 0, if Λ = ∅).

Proof. Suppose Λ 6= ∅. We first prove that there exists w0 ∈WG such that

w0 · δG = δG −
∑

θ∈Λ

θ .

Let
Φ+

n := Φ+
G\Φ

+
K .

We first remark that any root in Λ belongs to Φ+
n . Otherwise, if there exists

θ ∈ Λ ∩ Φ+
K , then since θ is a combination with non-negative coefficients of simple



6 JEAN-LOUIS MILHORAT

K-roots, and since < δK , θ
′
i >> 0, for any K-simple root θ′i, we would have

< δK , θ >≥ 0, contradicting the fact that θ ∈ Λ.
Now, consider

δn :=
1

2

∑

θ∈Φ+
n

θ = δG − δK .

Then

δG −
∑

θ∈Λ

θ = δK +

(
δn −

∑

θ∈Λ

θ

)
.

But,

β := δn −
∑

θ∈Λ

θ ,

is a weight of the decomposition of the spin representation under the action of K,
cf. § 2 in [Par71]: the weights are just the elements of the form δn −

∑
θ∈Υ θ, where

Υ is a subset of Φ+
n .

In fact β is the highest weight of an irreducible component in the decomposition,
otherwise we would have

β + α = δn −
∑

θ∈Υ

θ ,

where α is a K-positive root and Υ is a subset of Φ+
n .

Hence setting Λ′ := Λ\Υ and Υ′ := Υ\Λ, we would have

−
∑

θ∈Λ′

θ + α = −
∑

θ∈Υ′

θ .

But since Λ′ ⊂ Λ and α is a K-positive root

< −
∑

θ∈Λ′

θ + α, δK > > 0 ,

whereas since Υ′ ⊂ Φ+
n \Λ

< −
∑

θ∈Υ′

θ, δK >≤ 0 ,

hence a contradiction.
Now by the result of lemma 2.2 in [Par71], any highest weight in the decomposition
of the spin representation has the form

w · δG − δK ,

where w belongs to the subsetW of WG defined in (3). Hence there exists a w0 ∈W
such that

β = w0 · δG − δK ,

hence

δG −
∑

θ∈Λ

θ = δK + β = w0 · δG ,

hence the result.
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Now let w be any element in WG. By the above lemma,

w · δG = δG −
∑

θ∈Φ+

G

kθ θ , kθ = 0 or 1 ,

= δG −
∑

θ∈Λ

kθ θ −
∑

θ∈Φ+

G
\Λ

kθ θ .

Hence by the definition of Λ

< w · δG, δK >≤< δG −
∑

θ∈Λ

kθ θ, δK >≤< δG −
∑

θ∈Λ

θ, δK > .

Thus

max
w∈WG

< w · δG, δK >≤< δG, δK > −
∑

θ∈Λ

< θ, δK >=< w0 · δG, δK >

≤ max
w∈WG

< w · δG, δK > ,

hence the result. �

Now going back to formula (4), we get immediately from (6)

Corollary 3.3. The first eigenvalue λ of the Dirac operator verifies

λ2 = 2 ‖δG − δK‖2 + 4
∑

θ∈Λ

< θ, δK > +n/8 .

4. Proof of the results of Table I

In the following, we note for any integer n ≥ 1, (e1, . . . , en), the standard basis
of K

n, K = R, C or H. The space of (n, n) matrices with coefficients in K is denoted
by Mn(K).

4.1. Quaternionic projective spaces HP
n. Here G = Spm+1 and K = Spm ×

Sp1. The decomposition of the spin representation into irreducible components
under the action of K is given in [Mil92], so we may conclude with formula (1).
However the result may be also simply concluded with formula (5).
The space H

n+1 is viewed as a right vector space on H in such a way that G may
be identified with the group

{
A ∈ Mm+1(H) ; tAA = Im+1

}
,

acting on the left on Hn+1 in the usual way. The group K is identified with the
subgroup of G defined by

{
A ∈ Mm+1(H) ; A =

(
B 0
0 q

)
, tBB = Im , q ∈ Sp1

}
.

Let T be the common torus of G and K

T :=








eiβ1

. . .

eiβm+1


 , β1, . . . , βm+1 ∈ R





,

where

∀β ∈ R , eiβ := cos(β) + sin(β) i ,

(1, i, j,k) being the standard basis of H.
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The Lie algebra of T is

T =








iβ1

. . .

iβm+1


 ; β1, β2, , . . . , βm+1 ∈ R





.

We denote by (x1, . . . , xm+1) the basis of T∗ given by

xk ·




iβ1

. . .

iβm+1


 = βk .

A vector µ ∈ iT∗ such that µ =
∑m+1

k=1 µk x̂k, in the basis (x̂k ≡ i xk)k=1,...,m+1, is
denoted by

µ = (µ1, µ2, . . . , µm+1) .

The restriction to T of the Killing form B of G is given by

∀X ∈ T , ∀Y ∈ T , B(X,Y ) = 4 (m+ 2)ℜ
(
tr(X Y )

)
.

It is easy to verify that the scalar product on iT∗ induced by the Killing form sign
changed is given by

∀µ = (µ1, . . . , µm+1) ∈ iT∗ , ∀µ′ = (µ′
1, . . . , µ

′
m+1) ∈ iT∗ ,

< µ, µ′ > =
1

4(m+ 2)

m+1∑

k=1

µk µ
′
k .

(13)

Now, considering the decomposition of the complexified Lie algebra of G under the
action of T , it is easy to verify that T is a common maximal torus of G and K, and
that the respective roots are given by

{
±(x̂i + x̂j) ,

±(x̂i − x̂i) ,
1 ≤ i < j ≤ m+ 1 , ± 2 x̂i , 1 ≤ i ≤ m+ 1 for G ,

{
±(x̂i + x̂j) ,

±(x̂i − x̂j) ,
1 ≤ i < j ≤ m, ± 2 x̂i , 1 ≤ i ≤ m+ 1 for K .

We consider as sets of positive roots

Φ+
G =

{{
x̂i + x̂j ,

x̂i − x̂j ,
1 ≤ i ≤ j ≤ m+ 1 ; 2 x̂i , 1 ≤ i ≤ m+ 1

}
,

and

Φ+
K =

{{
x̂i + x̂j ,

x̂i − x̂j ,
1 ≤ i ≤ j ≤ m ; 2 x̂i , 1 ≤ i ≤ m+ 1

}
.

Then

δG =
m+1∑

k=1

(m+ 2 − k) x̂k = (m+ 1,m, . . . , 2, 1) ,
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and

δK =

m∑

k=1

(m+ 1 − k) x̂k + x̂m+1 = (m,m− 1, . . . , 1, 1) .

Hence

δG − δK =

m∑

k=1

x̂k = (1, 1, . . . , 1, 0) ,

so

‖δG − δK‖2 =
m

4(m+ 2)
.

On the other hand, it is easy to verify that the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} ,

is empty, hence by formula (5), the square of the first eigenvalue λ of the Dirac
operator is given by

λ2 =
m

2(m+ 2)
+
m

2
=
m+ 3

m+ 2

m

2
.

4.2. Grassmannians Gr2(C
m+2), m even ≥ 2. Here G = SUm+2 and K is the

subgroup S(Um×U2) defined below. Here again, the decomposition into irreducible
components of the spin representation under the action of K is known, [Mil98],
hence the result may be obtained from formula (1). However the result may be also
simply concluded with formula (5).
The group G is identified with

{
A ∈ Mm+2(C) ; tAA = Im+2 and detA = 1

}
.

The group K is the group

S(Um × U2) =

{
A ∈ Mm+2(C) ; A =

(
B 0
0 C

)
, B ∈ Um , C ∈ U2 ; detA = 1

}
.

Let T be the common torus of G and K

T :=








eiβ1

. . .

eiβm+2


 , β1, . . . , βm+2 ∈ R ,

m+2∑

k=1

βk = 0





.

The Lie algebra of T is

T =







iβ1

. . .

iβm+2


 ; β1, β2, , . . . , βm+2 ∈ R ,

m+2∑

k=1

βk = 0





.

We denote by (x1, . . . , xm+1) the basis of T∗ given by

xk ·



iβ1

. . .

iβm+2


 = βk .

A vector µ ∈ iT∗ such that µ =
∑m+1

k=1 µk x̂k, in the basis (x̂k ≡ i xk)k=1,...,m+1, is
denoted by

µ = (µ1, µ2, . . . , µm+1) .
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The restriction to T of the Killing form B of G is given by

∀X ∈ T , ∀Y ∈ T , B(X,Y ) = 2 (m+ 2)ℜ
(
tr(X Y )

)
.

It is easy to verify that the scalar product on iT∗ induced by the Killing form sign
changed is given by

(14) ∀µ = (µ1, . . . , µm+1) ∈ iT∗ , ∀µ′ = (µ′
1, . . . , µ

′
m+1) ∈ iT∗ ,

< µ, µ′ >=
1

2(m+ 2)

m+1∑

k=1

µk µ
′
k −

1

2(m+ 2)2

(
m+1∑

k=1

µk

)(
m+1∑

k=1

µ′
k

)
.

Considering the decomposition of the complexified Lie algebra ofG under the action
of T , it is easy to verify that T is a common maximal torus of G and K, and that
the respective roots are given by

±(x̂i − x̂j) , 1 ≤ i < j ≤ m+ 1 , ±

(
x̂i +

m+1∑

k=1

x̂k

)
, 1 ≤ i ≤ m+ 1 , for G ,

±(x̂i − x̂j) , 1 ≤ i < j ≤ m, ±

(
x̂m+1 +

m+1∑

k=1

x̂k

)
, for K .

We consider as sets of positive roots

Φ+
G =

{
x̂i − x̂j , 1 ≤ i ≤ m+ 1 ; x̂i +

m+1∑

k=1

x̂k , 1 ≤ i ≤ m+ 1

}
,

and

Φ+
K =

{
x̂i − x̂j , 1 ≤ i ≤ m ; x̂m+1 +

m+1∑

k=1

x̂k

}
.

Then

δG =

m+1∑

k=1

(m+ 2 − k) x̂k = (m+ 1,m, . . . , 2, 1) ,

and

δK =
1

2

(
m∑

k=1

(m+ 2 − 2k) x̂k + 2 x̂m+1

)
=

1

2
(m,m− 2,m− 4 . . . , 2 −m, 2) .

Hence

δG − δK =
1

2
(m+ 2)

m∑

k=1

x̂k =
1

2
(m+ 2)(1, 1, . . . , 1, 0) ,

so

‖δG − δK‖2 =
m

4
.

We now determine the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} .
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Recall that from the proof of lemma 3.2, if Λ is non empty, then any θ ∈ Λ belongs
to Φ+

G\Φ
+
K . It is then easy to verify that the elements of Λ are

x̂j − x̂m+1 ,
m

2
+ 1 ≤ j ≤ m, < x̂j − x̂m+1, δK >=

1

2(m+ 2)

(m
2

− j
)
,

x̂j +

m+1∑

k=1

x̂k ,
m

2
+ 2 ≤ j ≤ m, < x̂j +

m+1∑

k=1

x̂k, δK >=
1

2(m+ 2)

(m
2

+ 1 − j
)
.

So
∑

θ∈Λ

< θ, δK >= −
m2

8(m+ 2)
.

Hence, by formula (5), the square of the first eigenvalue λ of the Dirac operator is
given by

λ2 =
m

2
−

m2

2(m+ 2)
+
m

2
=
m+ 4

m+ 2

m

2
.

4.3. Grassmannians G̃r4(R
m+4), m even ≥ 4. Here G = Spinm+4 and, iden-

tifying Rm with the subspace of Rm+4 spanned by e1, . . . em, and R4 with the
subspace spanned by em+1, . . . , em+4, K is the subgroup of G defined by

SpinmSpin4 :=
{
ψ ∈ Spinm+4 ; ψ = ϕφ , ϕ ∈ Spinm , φ ∈ Spin4

}
.

We consider the common torus of G and K defined by

T =





m
2

+2∑

k=1

(
cos(βk) + sin(βk) e2k−1 · e2k

)
; β1, . . . , βm

2
+2 ∈ R



 .

The Lie algebra of T is

T =





m
2

+2∑

k=1

βk e2k−1 · e2k ; β1, . . . , βm
2

+2 ∈ R



 .

We denote by (x1, . . . , xm
2

+2) the basis of T∗ given by

xk ·

m
2

+2∑

j=1

βj e2j−1 · e2j = βk .

We introduce the basis (x̂1, . . . , x̂m
2

+2) of iT∗ defined by

x̂k := 2i xk , k = 1, . . . ,
m

2
+ 2 .

A vector µ ∈ iT∗ such that µ =
∑m

2
+2

k=1 µk x̂k, is denoted by

µ = (µ1, µ2, . . . , µm
2

+2) .

The restriction to T of the Killing form B of G is given by

B(e2k−1 · e2k, e2l−1 · e2l) = −8 (m+ 2) δkl .
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It is easy to verify that the scalar product on iT∗ induced by the Killing form sign
changed is given by

∀µ = (µ1, . . . , µm
2

+2) ∈ iT∗ , ∀µ′ = (µ′
1, . . . , µ

′
m
2

+2) ∈ iT∗ ,

< µ, µ′ > =
1

2(m+ 2)

m
2

+2∑

k=1

µk µ
′
k .

(15)

Considering the decomposition of the complexified Lie algebra ofG under the action
of T , it is easy to verify that T is a common maximal torus of G and K, and that
the respective roots are given by

± (x̂i + x̂j) , ±(x̂i − x̂j) , 1 ≤ i < j ≤
m

2
+ 2 , for G ,

{
±(x̂i + x̂j) , ±(x̂i − x̂j) , 1 ≤ i < j ≤ m

2

±(x̂m
2

+1 + x̂m
2

+2) , ±(x̂m
2

+1 − x̂m
2

+2) ,
for K .

We consider as sets of positive roots

Φ+
G =

{
x̂i + x̂j , x̂i − x̂j , 1 ≤ i < j ≤

m

2
+ 2
}
,

and

Φ+
K =

{
x̂i + x̂j , x̂i − x̂j , 1 ≤ i < j ≤

m

2
, x̂m

2
+1 + x̂m

2
+2 , x̂m

2
+1 − x̂m

2
+2

}
.

Then

δG =

m
2

+2∑

k=1

(
m

2
+ 2 − k) x̂k = (

m

2
+ 1,

m

2
, . . . , 1, 0) ,

and

δK =

m
2∑

k=1

(
m

2
− k) x̂k + x̂m

2
+1 = (

m

2
− 1,

m

2
− 2, . . . , 1, 0) .

Hence

δG − δK = 2

m
2∑

k=1

x̂k = 2 (1, 1, . . . , 1, 0, 0) ,

so

‖δG − δK‖2 =
m

m+ 2
.

On the other hand, it is easy to verify that the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} ,

has only one element, namely

x̂m
2
− x̂m

2
+1 , with < x̂m

2
− x̂m

2
+1, δK >= −1 .

Hence, by formula (5), the square of the first eigenvalue λ of the Dirac operator is
given by

λ2 =
2m

m+ 2
−

2

m+ 2
+
m

2
=
m2 + 6m− 4

2(m+ 2)
.



A FORMULA FOR THE FIRST EIGENVALUE OF THE DIRAC OPERATOR... 13

4.4. The four exceptional cases. Note first that since all the groups G we con-
sider are simple, their roots system are irreducible so, up to a constant, there is
only one WG-invariant scalar product on the subspace generated by the set of roots,
cf. for instance Remark (5.10), § V in [BtD85].
We use the description of root systems given in [BMP85]. Those root systems are
expressed in the simple root basis (αi). Note that the WG-invariant scalar product
( , ) used there is such that (α, α) = 2 for any long root α. In order to compare it
with the scalar product < , > induced by the Killing form sign-changed, we use the
“strange formula” of Freudenthal and de Vries, (cf. 47-11 in [FdV69]):

(16) < δG, δG >=
1

24
dim G .

To determine the set of K-positive roots, we use theorem 13, theorem 14 and the
proof of theorem 18 in [CG88]. By those results, the set Φ+

K may be defined as
follows. Let θ =

∑
mi αi be the highest root. In all cases considered, there exists

an index j such that mj = 2. Then

Φ+
K =

{∑
niαi ; nj 6= 1

}
.

4.4.1. The symmetric space G2/SO4. Using the results of pages 18 and 64 in
[BMP85], we get

δG = 3α1 + 5α2 .

By the expression of the Cartan matrix, the scalar product matrix is, in the basis

(α1, α2),

(
2 −1
−1 2/3

)
, hence

‖δG‖
2
( , ) =

14

3
.

On the other hand, by the formula of Freudenthal and de Vries,

‖δG‖
2
< , > =

7

12
,

so

< , >=
1

8
( , ) .

The set of K-positive roots is

Φ+
K = {2α1 + 3α2, α2} ,

hence

δK = α1 + 2α2 ,

so

δG − δK = 2α1 + 3α2 .

Hence

‖δG − δK‖2
< , > =

1

8
‖δG − δK‖2

( , ) =
1

4
.

Finally, it is easy to verify that the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} ,

is empty, hence by formula (5), the square of the first eigenvalue λ of the Dirac
operator is given by

λ2 =
1

2
+ 1 =

3

2
.
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4.4.2. The symmetric space E6/(SU6SU2). Using the results of pages 14 and 60 in
[BMP85], we get

δG = 8α1 + 15α2 + 21α3 + 15α4 + 8α5 + 11α6 .

Since all roots have same length equal to 2, we may introduce the fundamental
weight basis (ωi) because

(ωi, αj) = δij .

Since δG =
∑
ωi, we get

‖δG‖
2
( , ) = 78 ,

whereas by the formula of Freudenthal and de Vries,

‖δG‖
2
< , > =

78

24
,

so

< , >=
1

24
( , ) .

The set of K-positive roots may be defined by

Φ+
K =

{
6∑

i=1

ni αi ; n6 6= 1

}
.

Then

δK = 3α1 + 5α2 + 6α3 + 5α4 + 3α5 + α6

= ω1 + ω2 + ω3 + ω4 + ω5 − 4ω6 .

Hence

δG − δK = 5α1 + 10α2 + 15α3 + 10α4 + 5α5 + 10α6 = 5ω6 .

So

‖δG − δK‖2
< , > =

1

24
‖δG − δK‖2

( , ) =
25

12
.

On the other hand it is easy to verify that the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} ,

has 7 elements and that

∑

θ∈Λ

< θ, δK >=
1

24

∑

θ∈Λ

(θ, δK) = −
7

12
.

So by formula (5), the square of the first eigenvalue λ of the Dirac operator is given
by

λ2 =
50

12
−

28

12
+ 5 =

41

6
.
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4.4.3. The symmetric space E7/(Spin12SU2). By the results of pages 15 and 61 in
[BMP85], we get

δG =
1

2
(34α1 + 66α2 + 96α3 + 75α4 + 52α5 + 27α6 + 49α7) .

Here again, since all roots have same length equal to 2, we may consider the fun-
damental weight basis (ωi). We get

‖δG‖
2
( , ) =

399

2
,

whereas by the formula of Freudenthal and de Vries,

‖δG‖
2
< , > =

133

24
,

so

< , >=
1

36
( , ) .

The set of K-positive roots may be defined by

Φ+
K =

{
7∑

i=1

ni αi ; n1 6= 1

}
.

Then

δK =
1

2
(2α1 + 18α2 + 32α3 + 27α4 + 20α5 + 11α6 + 17α7)

= −7ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 .

Hence

δG − δK = 16α1 + 24α2 + 32α3 + 24α4 + 16α5 + 8α6 + 16α7 = 8ω6 .

So

‖δG − δK‖2
< , > =

1

36
‖δG − δK‖2

( , ) =
32

9
.

On the other hand it can be verified that the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} ,

has 13 elements and that

∑

θ∈Λ

< θ, δK >=
1

36

∑

θ∈Λ

(θ, δK) = −
41

36
.

So by formula (5), the square of the first eigenvalue λ of the Dirac operator is given
by

λ2 =
64

9
−

41

9
+ 8 =

95

9
.
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4.4.4. The symmetric space E8/(E7SU2). By the results of pages 16, 62 and 63 in
[BMP85], we get

δG = 29α1 + 57α2 + 84α3 + 110α4 + 135α5 + 91α6 + 46α7 + 68α8 .

Here again, since all roots have same length equal to 2, we may consider the fun-
damental weight basis (ωi). We get

‖δG‖
2
( , ) = 620 ,

whereas by the formula of Freudenthal and de Vries,

‖δG‖
2
< , > =

248

24
=

31

3
,

so

< , >=
1

60
( , ) .

The set of K-positive roots may be defined by

Φ+
K =

{
8∑

i=1

ni αi ; n1 6= 1

}
.

Then

δK = α1 + 15α2 + 28α3 + 40α4 + 51α5 + 35α6 + 18α7 + 26α8

= −13ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 .

Hence

δG − δK = 28α1 + 42α2 + 56α3 + 70α4 + 84α5 + 56α6 + 28α7 + 42α8 = 14ω6 .

So

‖δG − δK‖2
< , > =

1

60
‖δG − δK‖2

( , ) =
98

15
.

On the other hand it can be verified that the set

Λ := {θ ∈ Φ+
G ; < θ, δK > < 0} ,

has 25 elements and that
∑

θ∈Λ

< θ, δK >=
1

60

∑

θ∈Λ

(θ, δK) = −
137

60
.

So by formula (5), the square of the first eigenvalue λ of the Dirac operator is given
by

λ2 =
196

15
−

137

15
+ 14 =

269

15
.
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