42 research outputs found

    Mechanism of allosteric modulation of Escherichia coli carbamoyl phosphate synthetase probed by site-directed mutagenesis of ornithine site residues

    Get PDF
    AbstractThe role of residues of the ornithine activator site is probed by mutagenesis in Escherichia coli carbamoyl phosphate synthetase (CPS). Mutations E783A, E783L, E892A and E892L abolish ornithine binding, E783D and T1042V decrease 2–3 orders of magnitude and E892D decreased 10-fold apparent affinity for ornithine. None of the mutations inactivates CPS. E783 mutations hamper carbamate phosphorylation and increase K+ and MgATP requirements, possibly by perturbing the K+-loop near the carbamate phosphorylation site. Mutation E892A activates the enzyme similarly to ornithine, possibly by altering the position of K891 at the opening of the tunnel that delivers the carbamate to its phosphorylation site. T1042V also influences modulation by IMP and UMP, supporting signal transmission from the nucleotide effector to the ornithine site mediated by a hydrogen bond network involving T1042. Ornithine activation of CPS may be mediated by K+-loop and tunnel gating changes

    Gossos amb professió

    Get PDF
    Treball presentat a l'assignatura de Deontologia i Veterinària Legal (21223

    Mechanism of cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium LT2

    Get PDF
    ABSTRACT: Cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium (CbiA) is the first glutamine amidotransferase in the anaerobic biosynthetic pathway of vitamin B 12 and catalyzes the ATPdependent synthesis of cobyrinic acid a,c-diamide from cobyrinic acid using either glutamine or ammonia as the nitrogen source. The cbiA gene was cloned, the overexpressed protein was purified to homogeneity, and the kinetic parameters were determined. CbiA is a monomer with K m values of 0.74, 2.7, 53, and 26 200 µM for cobyrinic acid, ATP, glutamine, and ammonia, respectively. Analysis of the glutaminase partial reaction demonstrated that the hydrolysis of glutamine and the synthesis of the cobyrinic acid a,c-diamide product are uncoupled. The time course for the synthesis of the diamide product and positional isotope exchange experiments demonstrate that CbiA catalyzes the sequential amidation of the c-and a-carboxylate groups of cobyrinic acid via the formation of a phosphorylated intermediate. These results support a model for the catalytic mechanism in which CbiA catalyzes the amidation of the c-carboxylate, and then the intermediate is released into solution and binds to the same catalytic site for the amidation of the a-carboxylate. Several conserved residues in the synthetase active site were mutated to address the molecular basis of the amidation order; however, no changes in the order of amidation were obtained. The mutants D45N, D48N, and E90Q have a dramatic effect on the catalytic activity, whereas no effect was found for the mutant D97N. The substitutions by alanine of L47 and Y46 residues specifically decrease the affinity of the enzyme for the c-monoamide intermediate

    Integrative Oncogenomic Analysis of Microarray Data in Hematologic Malignancies

    Get PDF
    During the last decade, gene expression microarrays and array-based comparative genomic hybridization (array-CGH) have unraveled the complexity of human tumor genomes more precisely and comprehensively than ever before. More recently, the simultaneous assessment of global changes in messenger RNA (mRNA) expression and in DNA copy number through "integrative oncogenomic" analyses has allowed researchers the access to results uncovered through the analysis of one-dimensional data sets, thus accelerating cancer gene discovery. In this chapter, we discuss the major contributions of DNA microarrays to the study of hematological malignancies, focusing on the integrative oncogenomic approaches that correlate genomic and transcriptomic data. We also present the basic aspects of these methodologies and their present and future application in clinical oncology

    Bibliografía histórica sobre la ciencia y la técnica en España, 2004

    Get PDF
    Peer reviewedFecha 2014-09-15.--Fujitsu ScanSnap iX500.--Unidad técnica IHMC.--Archivo depósito IHMC.--Solo se permite el uso con fines educativos y de investigació

    Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma

    Get PDF
    In Burkitt lymphoma/leukemia (BL), achievement of complete remission with first-line chemotherapy remains a challenging issue, as most patients who respond remain disease-free, whereas those refractory have few options of being rescued with salvage therapies. The mechanisms underlying BL chemoresistance and how it can be circumvented remain undetermined. We previously reported the frequent inactivation of the proapoptotic BIM gene in B-cell lymphomas. Here we show that BIM epigenetic silencing by concurrent promoter hypermethylation and deacetylation occurs frequently in primary BL samples and BL-derived cell lines. Remarkably, patients with BL with hypermethylated BIM presented lower complete remission rate (24% vs 79%; P = .002) and shorter overall survival (P = .007) than those with BIM-expressing lymphomas, indicating that BIM transcriptional repression may mediate tumor chemoresistance. Accordingly, by combining in vitro and in vivo studies of human BL-xenografts grown in immunodeficient RAG2(-/-)γc(-/-) mice and of murine B220(+)IgM(+) B-cell lymphomas generated in Eμ-MYC and Eμ-MYC-BIM(+/-) transgenes, we demonstrate that lymphoma chemoresistance is dictated by BIM gene dosage and is reversible on BIM reactivation by genetic manipulation or after treatment with histone-deacetylase inhibitors. We suggest that the combination of histone-deacetylase inhibitors and high-dose chemotherapy may overcome chemoresistance, achieve durable remission, and improve survival of patients with BL

    LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    Get PDF
    BACKGROUND: LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. DESIGN AND METHODS: We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. RESULTS: B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P= 0.043). CONCLUSIONS: Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance

    Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas

    Get PDF
    Integrative genomic and gene-expression analyses have identified amplified oncogenes in B-cell non-Hodgkin lymphoma (B-NHL), but the capability of such technologies to localize tumor suppressor genes within homozygous deletions remains unexplored. Array-based comparative genomic hybridization (CGH) and gene-expression microarray analysis of 48 cell lines derived from patients with different B-NHLs delineated 20 homozygous deletions at 7 chromosome areas, all of which contained tumor suppressor gene targets. Further investigation revealed that only a fraction of primary biopsies presented inactivation of these genes by point mutation or intragenic deletion, but instead some of them were frequently silenced by epigenetic mechanisms. Notably, the pattern of genetic and epigenetic inactivation differed among B-NHL subtypes. Thus, the P53-inducible PIG7/LITAF was silenced by homozygous deletion in primary mediastinal B-cell lymphoma and by promoter hypermethylation in germinal center lymphoma, the proapoptotic BIM gene presented homozygous deletion in mantle cell lymphoma and promoter hypermethylation in Burkitt lymphoma, the proapoptotic BH3-only NOXA was mutated and preferentially silenced in diffuse large B-cell lymphoma, and INK4c/P18 was silenced by biallelic mutation in mantle-cell lymphoma. Our microarray strategy has identified novel candidate tumor suppressor genes inactivated by genetic and epigenetic mechanisms that substantially vary among the B-NHL subtypes

    Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

    Get PDF
    The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials

    A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma

    Get PDF
    The chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 overexpression plays an essential role in the development of mantle cell lymphoma (MCL), an aggressive tumor that remains incurable with current treatment strategies. Cyclin-D1 has been postulated as an effective therapeutic target, but the evaluation of this target has been hampered by our incomplete understanding of its oncogenic functions and by the lack of valid MCL murine models. To address these issues, we generated a cyclin-D1-driven mouse model in which cyclin-D1 expression can be regulated externally. These mice developed cyclin-D1-expressing lymphomas capable of recapitulating features of human MCL. We found that cyclin-D1 inactivation was not sufficient to induce lymphoma regression in vivo; however, using a combination of in vitro and in vivo assays, we identified a novel prosurvival cyclin-D1 function in MCL cells. Specifically, we found that cyclin-D1, besides increasing cell proliferation through deregulation of the cell cycle at the G(1)-S transition, sequestrates the proapoptotic protein BAX in the cytoplasm, thereby favoring BCL2's antiapoptotic function. Accordingly, cyclin-D1 inhibition sensitized the lymphoma cells to apoptosis through BAX release. Thus, genetic or pharmacologic targeting of cyclin-D1 combined with a proapoptotic BH3 mimetic synergistically killed the cyclin-D1-expressing murine lymphomas, human MCL cell lines, and primary lymphoma cells. Our study identifies a role of cyclin-D1 in deregulating apoptosis in MCL cells, and highlights the potential benefit of simultaneously targeting cyclin-D1 and survival pathways in patients with MCL. This effective combination therapy also might be exploited in other cyclin-D1-expressing tumors
    corecore